These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 17368472)
21. Numerical solution of a multi-ion one-potential model for electroosmotic flow in two-dimensional rectangular microchannels. Van Theemsche A; Deconinck J; Van den Bossche B; Bortels L Anal Chem; 2002 Oct; 74(19):4919-26. PubMed ID: 12380813 [TBL] [Abstract][Full Text] [Related]
22. Starting electroosmotic flow in an annulus and in a rectangular channel. Chang CC; Wang CY Electrophoresis; 2008 Jul; 29(14):2970-9. PubMed ID: 18655036 [TBL] [Abstract][Full Text] [Related]
23. Film Mass Transfer Coefficient Expressions for Electroosmotic Flows. Liapis AI; Grimes BA J Colloid Interface Sci; 2000 Sep; 229(2):540-543. PubMed ID: 10985833 [TBL] [Abstract][Full Text] [Related]
24. Electroosmotic Flow through an Annulus. Tsao HK J Colloid Interface Sci; 2000 May; 225(1):247-250. PubMed ID: 10767168 [TBL] [Abstract][Full Text] [Related]
25. Electroosmotic flows in microchannels with finite inertial and pressure forces. Santiago JG Anal Chem; 2001 May; 73(10):2353-65. PubMed ID: 11393863 [TBL] [Abstract][Full Text] [Related]
26. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel. Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303 [TBL] [Abstract][Full Text] [Related]
28. Electrically driven flow near a colloidal particle close to an electrode with a Faradaic current. Ristenpart WD; Aksay IA; Saville DA Langmuir; 2007 Mar; 23(7):4071-80. PubMed ID: 17335253 [TBL] [Abstract][Full Text] [Related]
30. Pore-scale dispersion in electrokinetic flow through a random sphere packing. Hlushkou D; Khirevich S; Apanasovich V; Seidel-Morgenstern A; Tallarek U Anal Chem; 2007 Jan; 79(1):113-21. PubMed ID: 17194128 [TBL] [Abstract][Full Text] [Related]
31. Alternating current electroosmotic flow in polyelectrolyte-grafted nanochannel. Li F; Jian Y; Chang L; Zhao G; Yang L Colloids Surf B Biointerfaces; 2016 Nov; 147():234-241. PubMed ID: 27518455 [TBL] [Abstract][Full Text] [Related]
32. ac electroosmosis in rectangular microchannels. Campisi M; Accoto D; Dario P J Chem Phys; 2005 Nov; 123(20):204724. PubMed ID: 16351310 [TBL] [Abstract][Full Text] [Related]
33. Electrokinetic transport in microchannels with random roughness. Wang M; Kang Q Anal Chem; 2009 Apr; 81(8):2953-61. PubMed ID: 19301844 [TBL] [Abstract][Full Text] [Related]
34. Numerical analysis of electroosmotic flow in dense regular and random arrays of impermeable, nonconducting spheres. Hlushkou D; Seidel-Morgenstern A; Tallarek U Langmuir; 2005 Jun; 21(13):6097-112. PubMed ID: 15952866 [TBL] [Abstract][Full Text] [Related]
35. Electroosmotic flow in a capillary annulus with high zeta potentials. Kang Y; Yang C; Huang X J Colloid Interface Sci; 2002 Sep; 253(2):285-94. PubMed ID: 16290861 [TBL] [Abstract][Full Text] [Related]
36. Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices. RodrÃguez I; Chandrasekhar N Electrophoresis; 2005 Mar; 26(6):1114-21. PubMed ID: 15706573 [TBL] [Abstract][Full Text] [Related]
38. The Effect of Surfactant on the Motion of a Buoyancy-Driven Drop at Intermediate Reynolds Numbers: A Numerical Approach. Li Xj XJ; Mao ZS J Colloid Interface Sci; 2001 Aug; 240(1):307-322. PubMed ID: 11446814 [TBL] [Abstract][Full Text] [Related]
39. High-ionic-strength electroosmotic flows in uncharged hydrophobic nanochannels. Kim D; Darve E J Colloid Interface Sci; 2009 Feb; 330(1):194-200. PubMed ID: 19007939 [TBL] [Abstract][Full Text] [Related]
40. Simulation of turbulent airflow using a CT based upper airway model of a racehorse. Rakesh V; Datta AK; Ducharme NG; Pease AP J Biomech Eng; 2008 Jun; 130(3):031011. PubMed ID: 18532860 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]