These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 17368482)

  • 1. Global changes in local protein dynamics reduce the entropic cost of carbohydrate binding in the arabinose-binding protein.
    MacRaild CA; Daranas AH; Bronowska A; Homans SW
    J Mol Biol; 2007 May; 368(3):822-32. PubMed ID: 17368482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton nuclear magnetic resonance spectroscopy and ligand binding dynamics of the Escherichia coli L-arabinose binding protein.
    Clark AF; Gerken TA; Hogg RW
    Biochemistry; 1982 Apr; 21(9):2227-33. PubMed ID: 7046797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Backbone resonance assignment of the L-arabinose binding protein in complex with D-galactose.
    Daranas AH; Kalverda AP; Chiovitti A; Homans SW
    J Biomol NMR; 2004 Feb; 28(2):191-2. PubMed ID: 14755164
    [No Abstract]   [Full Text] [Related]  

  • 4. Quantum mechanical model assembly study on the energetics of binding of arabinose, fucose, and galactose to L-arabinose-binding protein.
    Peräkylä M; Pakkanen TA
    Proteins; 1994 Dec; 20(4):367-72. PubMed ID: 7731955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of binding of D-galactose and deoxy derivatives thereof to the L-arabinose-binding protein.
    Daranas AH; Shimizu H; Homans SW
    J Am Chem Soc; 2004 Sep; 126(38):11870-6. PubMed ID: 15382922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamical response of hen egg white lysozyme to the binding of a carbohydrate ligand.
    Moorman VR; Valentine KG; Wand AJ
    Protein Sci; 2012 Jul; 21(7):1066-73. PubMed ID: 22593013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer modelling approach to study the modes of binding of alpha- and beta-anomers of D-galactose, D-fucose and D-glucose to L-arabinose-binding protein.
    Mukhopadhyay C; Rao VS
    Int J Biol Macromol; 1989 Aug; 11(4):194-200. PubMed ID: 2489081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational Entropy of FK506 Binding to FKBP12 Determined by Nuclear Magnetic Resonance Relaxation and Molecular Dynamics Simulations.
    Solomentsev G; Diehl C; Akke M
    Biochemistry; 2018 Mar; 57(9):1451-1461. PubMed ID: 29412644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inversion of receptor binding preferences by mutagenesis: free energy thermodynamic integration studies on sugar binding to L-arabinose binding proteins.
    Zacharias M; Straatsma TP; McCammon JA; Quiocho FA
    Biochemistry; 1993 Jul; 32(29):7428-34. PubMed ID: 8338840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling of global and local vibrational modes in dynamic allostery of proteins.
    Hawkins RJ; McLeish TC
    Biophys J; 2006 Sep; 91(6):2055-62. PubMed ID: 16798805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of backbone dynamics in human ileal bile acid-binding protein: implications for the mechanism of ligand binding.
    Horváth G; Egyed O; Toke O
    Biochemistry; 2014 Aug; 53(31):5186-98. PubMed ID: 25073073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the periplasmic receptors for L-arabinose, D-glucose/D-galactose, and D-ribose. Structural and Functional Similarity.
    Vyas NK; Vyas MN; Quiocho FA
    J Biol Chem; 1991 Mar; 266(8):5226-37. PubMed ID: 1848243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein.
    Townsend PD; Rodgers TL; Glover LC; Korhonen HJ; Richards SA; Colwell LJ; Pohl E; Wilson MR; Hodgson DR; McLeish TC; Cann MJ
    J Biol Chem; 2015 Sep; 290(36):22225-35. PubMed ID: 26187469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interdomain dynamics and ligand binding: molecular dynamics simulations of glutamine binding protein.
    Pang A; Arinaminpathy Y; Sansom MS; Biggin PC
    FEBS Lett; 2003 Aug; 550(1-3):168-74. PubMed ID: 12935905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear magnetic resonance study of the role of M42 in the solution dynamics of Escherichia coli dihydrofolate reductase.
    Mauldin RV; Lee AL
    Biochemistry; 2010 Mar; 49(8):1606-15. PubMed ID: 20073522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-free and -bound structures of the binding protein (LivJ) of the Escherichia coli ABC leucine/isoleucine/valine transport system: trajectory and dynamics of the interdomain rotation and ligand specificity.
    Trakhanov S; Vyas NK; Luecke H; Kristensen DM; Ma J; Quiocho FA
    Biochemistry; 2005 May; 44(17):6597-608. PubMed ID: 15850393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional protein dynamics on uncharted time scales detected by nanoparticle-assisted NMR spin relaxation.
    Xie M; Yu L; Bruschweiler-Li L; Xiang X; Hansen AL; Brüschweiler R
    Sci Adv; 2019 Aug; 5(8):eaax5560. PubMed ID: 31453342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Pro to Gly mutation in the hinge of the arabinose-binding protein enhances binding and alters specificity. Sugar-binding and crystallographic studies.
    Vermersch PS; Tesmer JJ; Lemon DD; Quiocho FA
    J Biol Chem; 1990 Sep; 265(27):16592-603. PubMed ID: 2204627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational entropy changes upon lactose binding to the carbohydrate recognition domain of galectin-3.
    Diehl C; Genheden S; Modig K; Ryde U; Akke M
    J Biomol NMR; 2009 Sep; 45(1-2):157-69. PubMed ID: 19641853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal motions of surface alpha-helices in the D-galactose chemosensory receptor. Detection by disulfide trapping.
    Careaga CL; Falke JJ
    J Mol Biol; 1992 Aug; 226(4):1219-35. PubMed ID: 1518053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.