These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 17368487)
1. Calcium mediated excitotoxicity in neurofilament aggregate-bearing neurons in vitro is NMDA receptor dependant. Sanelli T; Ge W; Leystra-Lantz C; Strong MJ J Neurol Sci; 2007 May; 256(1-2):39-51. PubMed ID: 17368487 [TBL] [Abstract][Full Text] [Related]
2. Loss of nitric oxide-mediated down-regulation of NMDA receptors in neurofilament aggregate-bearing motor neurons in vitro: implications for motor neuron disease. Sanelli T; Strong MJ Free Radic Biol Med; 2007 Jan; 42(1):143-51. PubMed ID: 17157201 [TBL] [Abstract][Full Text] [Related]
3. Sequestration of nNOS in neurofilamentous aggregate bearing neurons in vitro leads to enhanced NMDA-mediated calcium influx. Sanelli TR; Sopper MM; Strong MJ Brain Res; 2004 Apr; 1004(1-2):8-17. PubMed ID: 15033415 [TBL] [Abstract][Full Text] [Related]
4. Tissue kallikrein alleviates glutamate-induced neurotoxicity by activating ERK1. Liu L; Zhang R; Liu K; Zhou H; Tang Y; Su J; Yu X; Yang X; Tang M; Dong Q J Neurosci Res; 2009 Dec; 87(16):3576-90. PubMed ID: 19598250 [TBL] [Abstract][Full Text] [Related]
5. Differential effect of glutamate receptor blockade on dendritic outgrowth in chicken lumbar motoneurons. Ni X; Martin-Caraballo M Neuropharmacology; 2010 Mar; 58(3):593-604. PubMed ID: 19995566 [TBL] [Abstract][Full Text] [Related]
6. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx. Urushitani M; Nakamizo T; Inoue R; Sawada H; Kihara T; Honda K; Akaike A; Shimohama S J Neurosci Res; 2001 Mar; 63(5):377-87. PubMed ID: 11223912 [TBL] [Abstract][Full Text] [Related]
7. Glutamate induces rapid loss of axonal neurofilament proteins from cortical neurons in vitro. Chung RS; McCormack GH; King AE; West AK; Vickers JC Exp Neurol; 2005 Jun; 193(2):481-8. PubMed ID: 15869950 [TBL] [Abstract][Full Text] [Related]
8. ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Kruman II; Pedersen WA; Springer JE; Mattson MP Exp Neurol; 1999 Nov; 160(1):28-39. PubMed ID: 10630188 [TBL] [Abstract][Full Text] [Related]
9. Cerebrospinal fluid from amyotrophic lateral sclerosis patients preferentially elevates intracellular calcium and toxicity in motor neurons via AMPA/kainate receptor. Sen I; Nalini A; Joshi NB; Joshi PG J Neurol Sci; 2005 Aug; 235(1-2):45-54. PubMed ID: 15936037 [TBL] [Abstract][Full Text] [Related]
10. Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Van Damme P; Bogaert E; Dewil M; Hersmus N; Kiraly D; Scheveneels W; Bockx I; Braeken D; Verpoorten N; Verhoeven K; Timmerman V; Herijgers P; Callewaert G; Carmeliet P; Van Den Bosch L; Robberecht W Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14825-30. PubMed ID: 17804792 [TBL] [Abstract][Full Text] [Related]
11. Counteraction by repetitive daily exposure to static magnetism against sustained blockade of N-methyl-D-aspartate receptor channels in cultured rat hippocampal neurons. Hirai T; Taniura H; Goto Y; Tamaki K; Oikawa H; Kambe Y; Ogura M; Ohno Y; Takarada T; Yoneda Y J Neurosci Res; 2005 May; 80(4):491-500. PubMed ID: 15846781 [TBL] [Abstract][Full Text] [Related]
12. Slow and selective death of spinal motor neurons in vivo by intrathecal infusion of kainic acid: implications for AMPA receptor-mediated excitotoxicity in ALS. Sun H; Kawahara Y; Ito K; Kanazawa I; Kwak S J Neurochem; 2006 Aug; 98(3):782-91. PubMed ID: 16893420 [TBL] [Abstract][Full Text] [Related]
13. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Heath PR; Shaw PJ Muscle Nerve; 2002 Oct; 26(4):438-58. PubMed ID: 12362409 [TBL] [Abstract][Full Text] [Related]
14. Regulation of the maturation of osteoblasts and osteoclastogenesis by glutamate. Lin TH; Yang RS; Tang CH; Wu MY; Fu WM Eur J Pharmacol; 2008 Jul; 589(1-3):37-44. PubMed ID: 18538763 [TBL] [Abstract][Full Text] [Related]
16. Dual effect of glutamate on GABAergic interneuron survival during cerebral cortex development in mice neonates. Desfeux A; El Ghazi F; Jégou S; Legros H; Marret S; Laudenbach V; Gonzalez BJ Cereb Cortex; 2010 May; 20(5):1092-108. PubMed ID: 19759125 [TBL] [Abstract][Full Text] [Related]
17. Developmental characteristics of AMPA receptors in chick lumbar motoneurons. Ni X; Sullivan GJ; Martin-Caraballo M Dev Neurobiol; 2007 Sep; 67(11):1419-32. PubMed ID: 17497695 [TBL] [Abstract][Full Text] [Related]
18. NMDA and non-NMDA receptor-mediated differential Ca2+ load and greater vulnerability of motor neurons in spinal cord cultures. Sen I; Joshi DC; Joshi PG; Joshi NB Neurochem Int; 2008 Jan; 52(1-2):247-55. PubMed ID: 17692996 [TBL] [Abstract][Full Text] [Related]
19. Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors mediate development, but not maintenance, of secondary allodynia evoked by first-degree burn in the rat. Jones TL; Sorkin LS J Pharmacol Exp Ther; 2004 Jul; 310(1):223-9. PubMed ID: 15007101 [TBL] [Abstract][Full Text] [Related]
20. New role for spinal Stargazin in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated pain sensitization after inflammation. Tao F; Skinner J; Su Q; Johns RA J Neurosci Res; 2006 Sep; 84(4):867-73. PubMed ID: 16791853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]