These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 17368590)
1. Developmental expression of myostatin in cardiomyocytes and its effect on foetal and neonatal rat cardiomyocyte proliferation. McKoy G; Bicknell KA; Patel K; Brooks G Cardiovasc Res; 2007 May; 74(2):304-12. PubMed ID: 17368590 [TBL] [Abstract][Full Text] [Related]
2. Insulin-like growth factor-1 mediates stretch-induced upregulation of myostatin expression in neonatal rat cardiomyocytes. Shyu KG; Ko WH; Yang WS; Wang BW; Kuan P Cardiovasc Res; 2005 Dec; 68(3):405-14. PubMed ID: 16125157 [TBL] [Abstract][Full Text] [Related]
3. Alterations in myostatin expression are associated with changes in cardiac left ventricular mass but not ejection fraction in the mouse. Artaza JN; Reisz-Porszasz S; Dow JS; Kloner RA; Tsao J; Bhasin S; Gonzalez-Cadavid NF J Endocrinol; 2007 Jul; 194(1):63-76. PubMed ID: 17592022 [TBL] [Abstract][Full Text] [Related]
4. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. Sharma M; Kambadur R; Matthews KG; Somers WG; Devlin GP; Conaglen JV; Fowke PJ; Bass JJ J Cell Physiol; 1999 Jul; 180(1):1-9. PubMed ID: 10362012 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-beta2. Joyce NC; Harris DL; Mello DM Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2152-9. PubMed ID: 12091410 [TBL] [Abstract][Full Text] [Related]
6. Skeletal muscle-derived progenitors capable of differentiating into cardiomyocytes proliferate through myostatin-independent TGF-beta family signaling. Nomura T; Ueyama T; Ashihara E; Tateishi K; Asada S; Nakajima N; Isodono K; Takahashi T; Matsubara H; Oh H Biochem Biophys Res Commun; 2008 Jan; 365(4):863-9. PubMed ID: 18047832 [TBL] [Abstract][Full Text] [Related]
9. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-beta- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures. Kamanga-Sollo E; Pampusch MS; White ME; Hathaway MR; Dayton WR Exp Cell Res; 2005 Nov; 311(1):167-76. PubMed ID: 16214131 [TBL] [Abstract][Full Text] [Related]
10. Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair. Ponnusamy M; Liu F; Zhang YH; Li RB; Zhai M; Liu F; Zhou LY; Liu CY; Yan KW; Dong YH; Wang M; Qian LL; Shan C; Xu S; Wang Q; Zhang YH; Li PF; Zhang J; Wang K Circulation; 2019 Jun; 139(23):2668-2684. PubMed ID: 30832495 [TBL] [Abstract][Full Text] [Related]
11. Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors. Evans-Anderson HJ; Alfieri CM; Yutzey KE Circ Res; 2008 Mar; 102(6):686-94. PubMed ID: 18218983 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Joulia D; Bernardi H; Garandel V; Rabenoelina F; Vernus B; Cabello G Exp Cell Res; 2003 Jun; 286(2):263-75. PubMed ID: 12749855 [TBL] [Abstract][Full Text] [Related]
13. Myofibrillogenesis regulator-1 attenuates hypoxia/reoxygenation-induced injury by repairing microfilaments in neonatal rat cardiomyocytes. Tao T; Wang X; Liu M; Liu X Exp Cell Res; 2015 Oct; 337(2):234-42. PubMed ID: 26051880 [TBL] [Abstract][Full Text] [Related]
14. Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells. Uosaki H; Magadum A; Seo K; Fukushima H; Takeuchi A; Nakagawa Y; Moyes KW; Narazaki G; Kuwahara K; Laflamme M; Matsuoka S; Nakatsuji N; Nakao K; Kwon C; Kass DA; Engel FB; Yamashita JK Circ Cardiovasc Genet; 2013 Dec; 6(6):624-33. PubMed ID: 24141057 [TBL] [Abstract][Full Text] [Related]
15. An exosomal-carried short periostin isoform induces cardiomyocyte proliferation. Balbi C; Milano G; Fertig TE; Lazzarini E; Bolis S; Taniyama Y; Sanada F; Di Silvestre D; Mauri P; Gherghiceanu M; Lüscher TF; Barile L; Vassalli G Theranostics; 2021; 11(12):5634-5649. PubMed ID: 33897872 [TBL] [Abstract][Full Text] [Related]
16. Effects of hypoxia on cardiomyocyte proliferation and association with stage of development. Sun Y; Jiang C; Hong H; Liu J; Qiu L; Huang Y; Ye L Biomed Pharmacother; 2019 Oct; 118():109391. PubMed ID: 31545287 [TBL] [Abstract][Full Text] [Related]
17. Stretch-induced hypertrophy of isolated adult rabbit cardiomyocytes. Blaauw E; van Nieuwenhoven FA; Willemsen P; Delhaas T; Prinzen FW; Snoeckx LH; van Bilsen M; van der Vusse GJ Am J Physiol Heart Circ Physiol; 2010 Sep; 299(3):H780-7. PubMed ID: 20639217 [TBL] [Abstract][Full Text] [Related]
18. Cardiomyocyte cell cycle control and growth estimation in vivo--an analysis based on cardiomyocyte nuclei. Walsh S; Pontén A; Fleischmann BK; Jovinge S Cardiovasc Res; 2010 Jun; 86(3):365-73. PubMed ID: 20071355 [TBL] [Abstract][Full Text] [Related]
19. Hypoxia activates muscle-restricted coiled-coil protein (MURC) expression via transforming growth factor-β in cardiac myocytes. Shyu KG; Cheng WP; Wang BW; Chang H Clin Sci (Lond); 2014 Mar; 126(5):367-75. PubMed ID: 24001173 [TBL] [Abstract][Full Text] [Related]