These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 17368729)

  • 41. Comparison of modification sites formed on human serum albumin at various stages of glycation.
    Barnaby OS; Cerny RL; Clarke W; Hage DS
    Clin Chim Acta; 2011 Jan; 412(3-4):277-85. PubMed ID: 21034726
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Attenuation of non-enzymatic thermal glycation of bovine serum albumin (BSA) using β-carotene.
    Bodiga VL; Eda SR; Veduruvalasa VD; Mididodla LD; Parise PK; Kodamanchili S; Jallepalli S; Inapurapu SP; Neerukonda M; Vemuri PK; Bodiga S
    Int J Biol Macromol; 2013 May; 56():41-8. PubMed ID: 23384487
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conformational analysis of human serum albumin and its non-enzymatic glycation products using monoclonal antibodies.
    Saito K; Hamano K; Nakagawa M; Yugawa K; Muraoka J; Kuba H; Furukawa K; Azuma T
    J Biochem; 2011 May; 149(5):569-80. PubMed ID: 21258068
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molten-globule like partially folded states of human serum albumin induced by fluoro and alkyl alcohols at low pH.
    Kumar Y; Tayyab S; Muzammil S
    Arch Biochem Biophys; 2004 Jun; 426(1):3-10. PubMed ID: 15130777
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The in vitro inhibition effect of 2 nm gold nanoparticles on non-enzymatic glycation of human serum albumin.
    Seneviratne C; Narayanan R; Liu W; Dain JA
    Biochem Biophys Res Commun; 2012 Jun; 422(3):447-54. PubMed ID: 22579685
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glycation promotes the formation of genotoxic aggregates in glucose oxidase.
    Khan TA; Amani S; Naeem A
    Amino Acids; 2012 Sep; 43(3):1311-22. PubMed ID: 22198547
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quercetin as a finer substitute to aminoguanidine in the inhibition of glycation products.
    Ashraf JM; Shahab U; Tabrez S; Lee EJ; Choi I; Ahmad S
    Int J Biol Macromol; 2015; 77():188-92. PubMed ID: 25799884
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification and relative quantification of specific glycation sites in human serum albumin.
    Frolov A; Hoffmann R
    Anal Bioanal Chem; 2010 Jul; 397(6):2349-56. PubMed ID: 20496030
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New insights into non-enzymatic glycation of human serum albumin biopolymer: A study to unveil its impaired structure and function.
    Raghav A; Ahmad J; Alam K; Khan AU
    Int J Biol Macromol; 2017 Aug; 101():84-99. PubMed ID: 28322944
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of albumin glycation on the erythrocyte aggregation: an in vitro study.
    Candiloros H; Muller S; Ziegler O; Donner M; Drouin P
    Diabet Med; 1996 Jul; 13(7):646-50. PubMed ID: 8840099
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of mass spectrometry in the study of non-enzymatic protein glycation in diabetes: an update.
    Lapolla A; Fedele D; Seraglia R; Traldi P
    Mass Spectrom Rev; 2006; 25(5):775-97. PubMed ID: 16625652
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of non-enzymatic post-translation modifications on the ability of human serum albumin to bind iron. Implications for non-transferrin-bound iron speciation.
    Silva AM; Hider RC
    Biochim Biophys Acta; 2009 Oct; 1794(10):1449-58. PubMed ID: 19505594
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Non-enzymatic glucosylation induced neo-epitopes on human serum albumin: A concentration based study.
    Neelofar K; Arif Z; Ahmad J; Alam K
    PLoS One; 2017; 12(2):e0172074. PubMed ID: 28192530
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Study of degradation pathways of Amadori compounds obtained by glycation of opioid pentapeptide and related smaller fragments: stability, reactions, and spectroscopic properties.
    Jakas A; Horvat S
    Biopolymers; 2003 Aug; 69(4):421-31. PubMed ID: 12879488
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formation of alpha-aminoadipic and gamma-glutamic semialdehydes in proteins by the maillard reaction.
    Akagawa M; Sasaki D; Kurota Y; Suyama K
    Ann N Y Acad Sci; 2005 Jun; 1043():129-34. PubMed ID: 16037231
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of reactive-aldehydes on the modification and dysfunction of human serum albumin.
    Mera K; Takeo K; Izumi M; Maruyama T; Nagai R; Otagiri M
    J Pharm Sci; 2010 Mar; 99(3):1614-25. PubMed ID: 19760671
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Immunoglobulin-G Glycation by Fructose Leads to Structural Perturbations and Drop Off in Free Lysine and Arginine Residues.
    Faisal M; Alatar AA; Ahmad S
    Protein Pept Lett; 2017; 24(3):241-244. PubMed ID: 28124608
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detection of glycation sites in proteins by high-resolution mass spectrometry combined with isotopic labeling.
    Stefanowicz P; Kijewska M; Kluczyk A; Szewczuk Z
    Anal Biochem; 2010 May; 400(2):237-43. PubMed ID: 20156417
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Maillard reaction products in tissue proteins: new products and new perspectives.
    Thorpe SR; Baynes JW
    Amino Acids; 2003 Dec; 25(3-4):275-81. PubMed ID: 14661090
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermodynamic analysis of human serum albumin interactions with glucose: insights into the diabetic range of glucose concentration.
    Mohamadi-Nejad A; Moosavi-Movahedi AA; Hakimelahi GH; Sheibani N
    Int J Biochem Cell Biol; 2002 Sep; 34(9):1115-24. PubMed ID: 12009306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.