These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 17368929)

  • 1. Effect of operational parameters on the recovery rate of an oleophilic drum skimmer.
    Broje V; Keller AA
    J Hazard Mater; 2007 Sep; 148(1-2):136-43. PubMed ID: 17368929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface.
    Broje V; Keller AA
    Environ Sci Technol; 2006 Dec; 40(24):7914-8. PubMed ID: 17256548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial interactions between hydrocarbon liquids and solid surfaces used in mechanical oil spill recovery.
    Broje V; Keller AA
    J Colloid Interface Sci; 2007 Jan; 305(2):286-92. PubMed ID: 17064718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of fuel oil in salt marsh soils affected by the Prestige oil spill.
    Vega FA; Covelo EF; Reigosa MJ; Andrade ML
    J Hazard Mater; 2009 Jul; 166(2-3):1020-9. PubMed ID: 19157704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoporous polystyrene fibers for oil spill cleanup.
    Lin J; Shang Y; Ding B; Yang J; Yu J; Al-Deyab SS
    Mar Pollut Bull; 2012 Feb; 64(2):347-52. PubMed ID: 22136762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trials of bioremediation on a beach affected by the heavy oil spill of the Prestige.
    Fernández-Alvarez P; Vila J; Garrido-Fernández JM; Grifoll M; Lema JM
    J Hazard Mater; 2006 Oct; 137(3):1523-31. PubMed ID: 16730898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Prestige crisis: operational oceanography applied to oil recovery, by the Basque fishing fleet.
    González M; Uriarte A; Pozo R; Collins M
    Mar Pollut Bull; 2006; 53(5-7):369-74. PubMed ID: 16769415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-level synthesis of oil spill response equipment and countermeasures.
    Ventikos NP; Vergetis E; Psaraftis HN; Triantafyllou G
    J Hazard Mater; 2004 Feb; 107(1-2):51-8. PubMed ID: 15036642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site.
    Gidarakos E; Aivalioti M
    J Hazard Mater; 2007 Nov; 149(3):574-81. PubMed ID: 17709182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile).
    Godoy-Faúndez A; Antizar-Ladislao B; Reyes-Bozo L; Camaño A; Sáez-Navarrete C
    J Hazard Mater; 2008 Mar; 151(2-3):649-57. PubMed ID: 17630187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale cold water dispersant effectiveness experiments with Alaskan crude oils and Corexit 9500 and 9527 dispersants.
    Belore RC; Trudel K; Mullin JV; Guarino A
    Mar Pollut Bull; 2009 Jan; 58(1):118-28. PubMed ID: 19007943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MORICE--new technology for mechanical oil recovery in ice infested waters.
    Jensen HV; Mullin JV
    Mar Pollut Bull; 2003; 47(9-12):453-69. PubMed ID: 12899889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oil viscosity limitation on dispersibility of crude oil under simulated at-sea conditions in a large wave tank.
    Trudel K; Belore RC; Mullin JV; Guarino A
    Mar Pollut Bull; 2010 Sep; 60(9):1606-14. PubMed ID: 20723943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ oil/water separation using hydrophobic-oleophilic fibrous wall: a lab-scale feasibility study for groundwater cleanup.
    Lim TT; Huang X
    J Hazard Mater; 2006 Sep; 137(2):820-6. PubMed ID: 16621264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using a composite material containing waste tire powder and polypropylene fiber cut end to recover spilled oil.
    Lin C; Hong YJ; Hu AH
    Waste Manag; 2010 Feb; 30(2):263-7. PubMed ID: 19857949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Latest update of tests and improvements to US Coast Guard viscous oil pumping system.
    Drieu MD; Nourse PC; MacKay R; Cooper DA; Hvidbak F
    Mar Pollut Bull; 2003; 47(9-12):470-6. PubMed ID: 12899890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pumping through porous hydrophobic/oleophilic materials: an alternative technology for oil spill remediation.
    Ge J; Ye YD; Yao HB; Zhu X; Wang X; Wu L; Wang JL; Ding H; Yong N; He LH; Yu SH
    Angew Chem Int Ed Engl; 2014 Apr; 53(14):3612-6. PubMed ID: 24591265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface.
    Lin J; Tian F; Shang Y; Wang F; Ding B; Yu J; Guo Z
    Nanoscale; 2013 Apr; 5(7):2745-55. PubMed ID: 23426405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and testing of a new protocol for evaluating the effectiveness of oil spill surface washing agents.
    Koran KM; Venosa AD; Luedeker CC; Dunnigan K; Sorial GA
    Mar Pollut Bull; 2009 Dec; 58(12):1903-8. PubMed ID: 19692099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oil-recovery performance of a superhydrophobic sponge-covered disc skimmer.
    Yan X; Xie Y; Zhang S; Sheng X; Sun J; Wang W; Liu J; Dou X
    Heliyon; 2024 Jun; 10(11):e31574. PubMed ID: 38845967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.