These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17369259)

  • 21. Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally.
    Wendell DL; Bisson LF
    J Bacteriol; 1994 Jun; 176(12):3730-7. PubMed ID: 8206851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-copy suppression of glucose transport defects by HXT4 and regulatory elements in the promoters of the HXT genes in Saccharomyces cerevisiae.
    Theodoris G; Fong NM; Coons DM; Bisson LF
    Genetics; 1994 Aug; 137(4):957-66. PubMed ID: 7982576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters.
    Lewis DA; Bisson LF
    Mol Cell Biol; 1991 Jul; 11(7):3804-13. PubMed ID: 2046678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential requirement of SAGA subunits for Mot1p and Taf1p recruitment in gene activation.
    van Oevelen CJ; van Teeffelen HA; Timmers HT
    Mol Cell Biol; 2005 Jun; 25(12):4863-72. PubMed ID: 15923605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyperosmotic stress represses the transcription of HXT2 and HXT4 genes in Saccharomyces cerevisiae.
    Türkel S
    Folia Microbiol (Praha); 1999; 44(4):372-6. PubMed ID: 10983231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three aromatic amino acid residues critical for galactose transport in yeast Gal2 transporter.
    Kasahara T; Kasahara M
    J Biol Chem; 2000 Feb; 275(6):4422-8. PubMed ID: 10660614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters.
    Gonçalves DL; Matsushika A; de Sales BB; Goshima T; Bon EP; Stambuk BU
    Enzyme Microb Technol; 2014 Sep; 63():13-20. PubMed ID: 25039054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An RT-qPCR approach to study the expression of genes responsible for sugar assimilation during rehydration of active dry yeast.
    Vaudano E; Costantini A; Noti O; Garcia-Moruno E
    Food Microbiol; 2010 Sep; 27(6):802-8. PubMed ID: 20630323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of glucose uptake rate and production of target chemicals by overexpressing hexose transporters and transcriptional activator Gcr1 in Saccharomyces cerevisiae.
    Kim D; Song JY; Hahn JS
    Appl Environ Microbiol; 2015 Dec; 81(24):8392-401. PubMed ID: 26431967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient export of the glucose transporter Hxt1p from the endoplasmic reticulum requires Gsf2p.
    Sherwood PW; Carlson M
    Proc Natl Acad Sci U S A; 1999 Jun; 96(13):7415-20. PubMed ID: 10377429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate specificity and mapping of residues critical for transport in the high-affinity glutathione transporter Hgt1p.
    Zulkifli M; Yadav S; Thakur A; Singla S; Sharma M; Bachhawat AK
    Biochem J; 2016 Aug; 473(15):2369-82. PubMed ID: 27252386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The SKS1 gene of Saccharomyces cerevisiae is required for long-term adaptation of snf3 null strains to low glucose.
    Vagnoli P; Bisson LF
    Yeast; 1998 Mar; 14(4):359-69. PubMed ID: 9559544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low RNA Polymerase III activity results in up regulation of HXT2 glucose transporter independently of glucose signaling and despite changing environment.
    Adamczyk M; Szatkowska R
    PLoS One; 2017; 12(9):e0185516. PubMed ID: 28961268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trinucleotide insertions, deletions, and point mutations in glucose transporters confer K+ uptake in Saccharomyces cerevisiae.
    Liang H; Ko CH; Herman T; Gaber RF
    Mol Cell Biol; 1998 Feb; 18(2):926-35. PubMed ID: 9447989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of residues critical for proton-coupled glutathione translocation in the yeast glutathione transporter, Hgt1p.
    Zulkifli M; Bachhawat AK
    Biochem J; 2017 May; 474(11):1807-1821. PubMed ID: 28389436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae.
    Gamo FJ; Lafuente MJ; Gancedo C
    J Bacteriol; 1994 Dec; 176(24):7423-9. PubMed ID: 8002563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic response of the expression of hxt1, hxt5 and hxt7 transport proteins in Saccharomyces cerevisiae to perturbations in the extracellular glucose concentration.
    Buziol S; Warth L; Magario I; Freund A; Siemann-Herzberg M; Reuss M
    J Biotechnol; 2008 Apr; 134(3-4):203-10. PubMed ID: 18367282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gln-222 in transmembrane domain 4 and Gln-526 in transmembrane domain 9 are critical for substrate recognition in the yeast high affinity glutathione transporter, Hgt1p.
    Kaur J; Bachhawat AK
    J Biol Chem; 2009 Aug; 284(35):23872-84. PubMed ID: 19589778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of amino acids at two dimer interface regions of the alpha-factor receptor (Ste2).
    Wang HX; Konopka JB
    Biochemistry; 2009 Aug; 48(30):7132-9. PubMed ID: 19588927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sugar transport in Saccharomyces cerevisiae.
    Lagunas R
    FEMS Microbiol Rev; 1993 Apr; 10(3-4):229-42. PubMed ID: 8318258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.