These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 17369312)

  • 1. Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes.
    Alekseyenko AV; Kim N; Lee CJ
    RNA; 2007 May; 13(5):661-70. PubMed ID: 17369312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss.
    Modrek B; Lee CJ
    Nat Genet; 2003 Jun; 34(2):177-80. PubMed ID: 12730695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ASAP II database: analysis and comparative genomics of alternative splicing in 15 animal species.
    Kim N; Alekseyenko AV; Roy M; Lee C
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D93-8. PubMed ID: 17108355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved and species-specific alternative splicing in mammalian genomes.
    Nurtdinov RN; Neverov AD; Favorov AV; Mironov AA; Gelfand MS
    BMC Evol Biol; 2007 Dec; 7():249. PubMed ID: 18154685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatic analysis of TE-spliced new exons within human, mouse and zebrafish genomes.
    Kim DS; Huh JW; Kim YH; Park SJ; Kim HS; Chang KT
    Genomics; 2010 Nov; 96(5):266-71. PubMed ID: 20728532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons.
    Gelfman S; Burstein D; Penn O; Savchenko A; Amit M; Schwartz S; Pupko T; Ast G
    Genome Res; 2012 Jan; 22(1):35-50. PubMed ID: 21974994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for widespread subfunctionalization of splice forms in vertebrate genomes.
    Lambert MJ; Cochran WO; Wilde BM; Olsen KG; Cooper CD
    Genome Res; 2015 May; 25(5):624-32. PubMed ID: 25792610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in alternative splicing of human and mouse genes are accompanied by faster evolution of constitutive exons.
    Cusack BP; Wolfe KH
    Mol Biol Evol; 2005 Nov; 22(11):2198-208. PubMed ID: 16049198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3.
    Kandul NP; Noor MA
    BMC Genet; 2009 Oct; 10():67. PubMed ID: 19840385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of intron length on exon creation ratios during the evolution of mammalian genomes.
    Roy M; Kim N; Xing Y; Lee C
    RNA; 2008 Nov; 14(11):2261-73. PubMed ID: 18796579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The "alternative" choice of constitutive exons throughout evolution.
    Lev-Maor G; Goren A; Sela N; Kim E; Keren H; Doron-Faigenboim A; Leibman-Barak S; Pupko T; Ast G
    PLoS Genet; 2007 Nov; 3(11):e203. PubMed ID: 18020709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a subpopulation of conserved alternative splicing events under selection pressure for protein reading frame preservation.
    Resch A; Xing Y; Alekseyenko A; Modrek B; Lee C
    Nucleic Acids Res; 2004; 32(4):1261-9. PubMed ID: 14982953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolutionary fate of alternatively spliced homologous exons after gene duplication.
    Abascal F; Tress ML; Valencia A
    Genome Biol Evol; 2015 Apr; 7(6):1392-403. PubMed ID: 25931610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The birth of new exons: mechanisms and evolutionary consequences.
    Sorek R
    RNA; 2007 Oct; 13(10):1603-8. PubMed ID: 17709368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The emergence of alternative 3' and 5' splice site exons from constitutive exons.
    Koren E; Lev-Maor G; Ast G
    PLoS Comput Biol; 2007 May; 3(5):e95. PubMed ID: 17530917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different levels of alternative splicing among eukaryotes.
    Kim E; Magen A; Ast G
    Nucleic Acids Res; 2007; 35(1):125-31. PubMed ID: 17158149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionarily conserved coupling of transcription and alternative splicing in the EPB41 (protein 4.1R) and EPB41L3 (protein 4.1B) genes.
    Tan JS; Mohandas N; Conboy JG
    Genomics; 2005 Dec; 86(6):701-7. PubMed ID: 16242908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exon creation and establishment in human genes.
    Corvelo A; Eyras E
    Genome Biol; 2008; 9(9):R141. PubMed ID: 18811936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics and regulatory elements defining constitutive splicing and different modes of alternative splicing in human and mouse.
    Zheng CL; Fu XD; Gribskov M
    RNA; 2005 Dec; 11(12):1777-87. PubMed ID: 16251388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The architecture of pre-mRNAs affects mechanisms of splice-site pairing.
    Fox-Walsh KL; Dou Y; Lam BJ; Hung SP; Baldi PF; Hertel KJ
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16176-81. PubMed ID: 16260721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.