BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 17369336)

  • 1. Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A.
    Li Y; Irwin DC; Wilson DB
    Appl Environ Microbiol; 2007 May; 73(10):3165-72. PubMed ID: 17369336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic studies of Thermobifida fusca Cel9A active site mutant enzymes.
    Zhou W; Irwin DC; Escovar-Kousen J; Wilson DB
    Biochemistry; 2004 Aug; 43(30):9655-63. PubMed ID: 15274620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-directed mutation of noncatalytic residues of Thermobifida fusca exocellulase Cel6B.
    Zhang S; Irwin DC; Wilson DB
    Eur J Biochem; 2000 Jun; 267(11):3101-15. PubMed ID: 10824094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of noncatalytic residue mutations on substrate specificity and ligand binding of Thermobifida fusca endocellulase cel6A.
    Zhang S; Barr BK; Wilson DB
    Eur J Biochem; 2000 Jan; 267(1):244-52. PubMed ID: 10601873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased crystalline cellulose activity via combinations of amino acid changes in the family 9 catalytic domain and family 3c cellulose binding module of Thermobifida fusca Cel9A.
    Li Y; Irwin DC; Wilson DB
    Appl Environ Microbiol; 2010 Apr; 76(8):2582-8. PubMed ID: 20173060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the molecular states of the processive endocellulase Thermobifida fusca Cel9A during crystalline cellulose depolymerization.
    Kostylev M; Moran-Mirabal JM; Walker LP; Wilson DB
    Biotechnol Bioeng; 2012 Jan; 109(1):295-9. PubMed ID: 21837665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cel48A from Thermobifida fusca: structure and site directed mutagenesis of key residues.
    Kostylev M; Alahuhta M; Chen M; Brunecky R; Himmel ME; Lunin VV; Brady J; Wilson DB
    Biotechnol Bioeng; 2014 Apr; 111(4):664-73. PubMed ID: 24264519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of computer modeling and initial studies of site-directed mutagenesis to improve cellulase activity on Cel9A from Thermobifida fusca.
    Escovar-Kousen JM; Wilson D; Irwin D
    Appl Biochem Biotechnol; 2004; 113-116():287-97. PubMed ID: 15054213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulase processivity.
    Wilson DB; Kostylev M
    Methods Mol Biol; 2012; 908():93-9. PubMed ID: 22843392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between the CBM of Cel9A from Thermobifida fusca and cellulose fibers.
    Oliveira OV; Freitas LC; Straatsma TP; Lins RD
    J Mol Recognit; 2009; 22(1):38-45. PubMed ID: 18853469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B.
    Vuong TV; Wilson DB
    Appl Environ Microbiol; 2009 Nov; 75(21):6655-61. PubMed ID: 19734341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8.
    Moser F; Irwin D; Chen S; Wilson DB
    Biotechnol Bioeng; 2008 Aug; 100(6):1066-77. PubMed ID: 18553392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular Organization of the Thermobifida fusca Exoglucanase Cel6B Impacts Cellulose Hydrolysis and Designer Cellulosome Efficiency.
    Setter-Lamed E; Moraïs S; Stern J; Lamed R; Bayer EA
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28901714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding and reversibility of Thermobifida fusca Cel5A, Cel6B, and Cel48A and their respective catalytic domains to bacterial microcrystalline cellulose.
    Jung H; Wilson DB; Walker LP
    Biotechnol Bioeng; 2003 Oct; 84(2):151-9. PubMed ID: 12966571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitin binding by Thermobifida fusca cellulase catalytic domains.
    Li Y; Wilson DB
    Biotechnol Bioeng; 2008 Jul; 100(4):644-52. PubMed ID: 18306418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, characterization and phylogenetic relationships of cel5B, a new endoglucanase encoding gene from Thermobifida fusca.
    Posta K; Béki E; Wilson DB; Kukolya J; Hornok L
    J Basic Microbiol; 2004; 44(5):383-99. PubMed ID: 15378527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of family 9 cellulases from mesophilic and thermophilic bacteria.
    Mingardon F; Bagert JD; Maisonnier C; Trudeau DL; Arnold FH
    Appl Environ Microbiol; 2011 Feb; 77(4):1436-42. PubMed ID: 21169454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering a family 9 processive endoglucanase from Paenibacillus barcinonensis displaying a novel architecture.
    Chiriac AI; Cadena EM; Vidal T; Torres AL; Diaz P; Pastor FI
    Appl Microbiol Biotechnol; 2010 Apr; 86(4):1125-34. PubMed ID: 19957081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity.
    Caspi J; Irwin D; Lamed R; Li Y; Fierobe HP; Wilson DB; Bayer EA
    J Biotechnol; 2008 Jul; 135(4):351-7. PubMed ID: 18582975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction and characterization of chimeric cellulases with enhanced catalytic activity towards insoluble cellulosic substrates.
    Telke AA; Ghatge SS; Kang SH; Thangapandian S; Lee KW; Shin HD; Um Y; Kim SW
    Bioresour Technol; 2012 May; 112():10-7. PubMed ID: 22409983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.