These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 17369373)
1. The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Miao Y; Zentgraf U Plant Cell; 2007 Mar; 19(3):819-30. PubMed ID: 17369373 [TBL] [Abstract][Full Text] [Related]
2. Interaction of Arabidopsis TGA3 and WRKY53 transcription factors on Cestrum yellow leaf curling virus (CmYLCV) promoter mediates salicylic acid-dependent gene expression in planta. Sarkar S; Das A; Khandagale P; Maiti IB; Chattopadhyay S; Dey N Planta; 2018 Jan; 247(1):181-199. PubMed ID: 28913593 [TBL] [Abstract][Full Text] [Related]
3. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Gao QM; Venugopal S; Navarre D; Kachroo A Plant Physiol; 2011 Jan; 155(1):464-76. PubMed ID: 21030507 [TBL] [Abstract][Full Text] [Related]
4. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. Miao Y; Zentgraf U Plant J; 2010 Jul; 63(2):179-188. PubMed ID: 20409006 [TBL] [Abstract][Full Text] [Related]
5. The single-stranded DNA-binding protein WHIRLY1 represses WRKY53 expression and delays leaf senescence in a developmental stage-dependent manner in Arabidopsis. Miao Y; Jiang J; Ren Y; Zhao Z Plant Physiol; 2013 Oct; 163(2):746-56. PubMed ID: 23922267 [TBL] [Abstract][Full Text] [Related]
6. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Hu Y; Dong Q; Yu D Plant Sci; 2012 Apr; 185-186():288-97. PubMed ID: 22325892 [TBL] [Abstract][Full Text] [Related]
7. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Miao Y; Laun T; Zimmermann P; Zentgraf U Plant Mol Biol; 2004 Aug; 55(6):853-67. PubMed ID: 15604721 [TBL] [Abstract][Full Text] [Related]
8. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. Zheng Z; Mosher SL; Fan B; Klessig DF; Chen Z BMC Plant Biol; 2007 Jan; 7():2. PubMed ID: 17214894 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling. Jiang Y; Guo L; Liu R; Jiao B; Zhao X; Ling Z; Luo K PLoS One; 2016; 11(3):e0149137. PubMed ID: 27019084 [TBL] [Abstract][Full Text] [Related]
10. SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Ndamukong I; Abdallat AA; Thurow C; Fode B; Zander M; Weigel R; Gatz C Plant J; 2007 Apr; 50(1):128-39. PubMed ID: 17397508 [TBL] [Abstract][Full Text] [Related]
11. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Schön M; Töller A; Diezel C; Roth C; Westphal L; Wiermer M; Somssich IE Mol Plant Microbe Interact; 2013 Jul; 26(7):758-67. PubMed ID: 23617415 [TBL] [Abstract][Full Text] [Related]
12. Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. Shi Z; Maximova SN; Liu Y; Verica J; Guiltinan MJ BMC Plant Biol; 2010 Nov; 10():248. PubMed ID: 21078185 [TBL] [Abstract][Full Text] [Related]
13. Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant. Nandi A; Kachroo P; Fukushige H; Hildebrand DF; Klessig DF; Shah J Mol Plant Microbe Interact; 2003 Jul; 16(7):588-99. PubMed ID: 12848424 [TBL] [Abstract][Full Text] [Related]
14. A salicylic acid inducible mulberry WRKY transcription factor, MiWRKY53 is involved in plant defence response. Negi N; Khurana P Plant Cell Rep; 2021 Nov; 40(11):2151-2171. PubMed ID: 33997916 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of a LAM domain containing RNA-binding protein LARP1c induces precocious leaf senescence in Arabidopsis. Zhang B; Jia J; Yang M; Yan C; Han Y Mol Cells; 2012 Oct; 34(4):367-74. PubMed ID: 22965746 [TBL] [Abstract][Full Text] [Related]
16. Protein S-Acyltransferase 14: A Specific Role for Palmitoylation in Leaf Senescence in Arabidopsis. Li Y; Scott R; Doughty J; Grant M; Qi B Plant Physiol; 2016 Jan; 170(1):415-28. PubMed ID: 26537563 [TBL] [Abstract][Full Text] [Related]
17. Chitosan Oligosaccharide Induces Resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana by Activating Both Salicylic Acid- and Jasmonic Acid-Mediated Pathways. Jia X; Zeng H; Wang W; Zhang F; Yin H Mol Plant Microbe Interact; 2018 Dec; 31(12):1271-1279. PubMed ID: 29869942 [TBL] [Abstract][Full Text] [Related]
18. The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana. Zhang B; Van Aken O; Thatcher L; De Clercq I; Duncan O; Law SR; Murcha MW; van der Merwe M; Seifi HS; Carrie C; Cazzonelli C; Radomiljac J; Höfte M; Singh KB; Van Breusegem F; Whelan J Plant J; 2014 Nov; 80(4):709-27. PubMed ID: 25227923 [TBL] [Abstract][Full Text] [Related]
19. Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection. de Torres Zabala M; Zhai B; Jayaraman S; Eleftheriadou G; Winsbury R; Yang R; Truman W; Tang S; Smirnoff N; Grant M New Phytol; 2016 Feb; 209(3):1120-34. PubMed ID: 26428397 [TBL] [Abstract][Full Text] [Related]
20. Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Miao Y; Laun TM; Smykowski A; Zentgraf U Plant Mol Biol; 2007 Sep; 65(1-2):63-76. PubMed ID: 17587183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]