These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17369423)

  • 1. Invariance of single-file water mobility in gramicidin-like peptidic pores as function of pore length.
    Portella G; Pohl P; de Groot BL
    Biophys J; 2007 Jun; 92(11):3930-7. PubMed ID: 17369423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobility of a one-dimensional confined file of water molecules as a function of file length.
    Saparov SM; Pfeifer JR; Al-Momani L; Portella G; de Groot BL; Koert U; Pohl P
    Phys Rev Lett; 2006 Apr; 96(14):148101. PubMed ID: 16712124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of peptide-membrane interactions to modulate single-file water transport through modified gramicidin channels.
    Portella G; Polupanow T; Zocher F; Boytsov DA; Pohl P; Diederichsen U; de Groot BL
    Biophys J; 2012 Oct; 103(8):1698-705. PubMed ID: 23083713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of water permeability through nanoscopic hydrophilic channels.
    Portella G; de Groot BL
    Biophys J; 2009 Feb; 96(3):925-38. PubMed ID: 19186131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Not only enthalpy: large entropy contribution to ion permeation barriers in single-file channels.
    Portella G; Hub JS; Vesper MD; de Groot BL
    Biophys J; 2008 Sep; 95(5):2275-82. PubMed ID: 18515367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel.
    Pomès R; Roux B
    Biophys J; 1996 Jul; 71(1):19-39. PubMed ID: 8804586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steered molecular dynamics simulations of Na+ permeation across the gramicidin A channel.
    Liu Z; Xu Y; Tang P
    J Phys Chem B; 2006 Jun; 110(25):12789-95. PubMed ID: 16800614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics of K+ permeability through Gramicidin A by forward-reverse steered molecular dynamics.
    De Fabritiis G; Coveney PV; Villà-Freixa J
    Proteins; 2008 Oct; 73(1):185-94. PubMed ID: 18412256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional dynamics of ion channels: modulation of proton movement by conformational switches.
    Yu CH; Pomès R
    J Am Chem Soc; 2003 Nov; 125(45):13890-4. PubMed ID: 14599229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Desformylgramicidin: a model channel with an extremely high water permeability.
    Saparov SM; Antonenko YN; Koeppe RE; Pohl P
    Biophys J; 2000 Nov; 79(5):2526-34. PubMed ID: 11053127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water permeation through gramicidin A: desformylation and the double helix: a molecular dynamics study.
    de Groot BL; Tieleman DP; Pohl P; Grubmüller H
    Biophys J; 2002 Jun; 82(6):2934-42. PubMed ID: 12023216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmotic permeability in a molecular dynamics simulation of water transport through a single-occupancy pore.
    Kalko SG; Hernández JA; Grigera JR; Fischbarg J
    Biochim Biophys Acta; 1995 Dec; 1240(2):159-66. PubMed ID: 8541287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels.
    Chiu SW; Jakobsson E; Subramaniam S; McCammon JA
    Biophys J; 1991 Jul; 60(1):273-85. PubMed ID: 1715766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel.
    Pomès R; Roux B
    Biophys J; 2002 May; 82(5):2304-16. PubMed ID: 11964221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuum electrostatics fails to describe ion permeation in the gramicidin channel.
    Edwards S; Corry B; Kuyucak S; Chung SH
    Biophys J; 2002 Sep; 83(3):1348-60. PubMed ID: 12202360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water transport and ion-water interaction in the gramicidin channel.
    Dani JA; Levitt DG
    Biophys J; 1981 Aug; 35(2):501-8. PubMed ID: 6168311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realistic simulations of proton transport along the gramicidin channel: demonstrating the importance of solvation effects.
    Braun-Sand S; Burykin A; Chu ZT; Warshel A
    J Phys Chem B; 2005 Jan; 109(1):583-92. PubMed ID: 16851050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy.
    Roux B; Prod'hom B; Karplus M
    Biophys J; 1995 Mar; 68(3):876-92. PubMed ID: 7538804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of protein flexibility in ion permeation: a case study in gramicidin A.
    Baştuğ T; Gray-Weale A; Patra SM; Kuyucak S
    Biophys J; 2006 Apr; 90(7):2285-96. PubMed ID: 16415054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing a hydrophobic barrier within biomimetic nanopores.
    Trick JL; Wallace EJ; Bayley H; Sansom MS
    ACS Nano; 2014 Nov; 8(11):11268-79. PubMed ID: 25317664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.