BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17369467)

  • 1. A model of smooth muscle cell synchronization in the arterial wall.
    Jacobsen JC; Aalkjaer C; Nilsson H; Matchkov VV; Freiberg J; Holstein-Rathlou NH
    Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H229-37. PubMed ID: 17369467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion.
    Matchkov VV
    Dan Med Bull; 2010 Oct; 57(10):B4191. PubMed ID: 21040688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole cell oscillations in smooth muscle cells.
    Jacobsen JC; Aalkjaer C; Nilsson H; Matchkov VV; Freiberg J; Holstein-Rathlou NH
    Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H215-28. PubMed ID: 17369468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypothesis for the initiation of vasomotion.
    Peng H; Matchkov V; Ivarsen A; Aalkjaer C; Nilsson H
    Circ Res; 2001 Apr; 88(8):810-5. PubMed ID: 11325873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of arterial wall stress on vasomotion.
    Koenigsberger M; Sauser R; Bény JL; Meister JJ
    Biophys J; 2006 Sep; 91(5):1663-74. PubMed ID: 16751242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recruitment of smooth muscle cells and arterial vasomotion.
    Lamboley M; Schuster A; Bény JL; Meister JJ
    Am J Physiol Heart Circ Physiol; 2003 Aug; 285(2):H562-9. PubMed ID: 12574002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasomotion in human umbilical and placental veins: role of gap junctions and intracellular calcium reservoirs in their synchronous propagation.
    García-Huidobro DN; García-Huidobro MT; Huidobro-Toro JP
    Placenta; 2007 Apr; 28(4):328-38. PubMed ID: 16797694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intercellular communication: role of gap junctions in establishing the pattern of ATP-elicited Ca2+ oscillations and Ca2+-dependent currents in freshly isolated aortic smooth muscle cells.
    Fanchaouy M; Serir K; Meister JJ; Beny JL; Bychkov R
    Cell Calcium; 2005 Jan; 37(1):25-34. PubMed ID: 15541461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhythmicity in arterial smooth muscle.
    Haddock RE; Hill CE
    J Physiol; 2005 Aug; 566(Pt 3):645-56. PubMed ID: 15905215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasomotion and underlying mechanisms in small arteries. An in vitro study of rat blood vessels.
    Gustafsson H
    Acta Physiol Scand Suppl; 1993; 614():1-44. PubMed ID: 8128886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cGMP on coordination of vascular smooth muscle cells of rat mesenteric small arteries.
    Rahman A; Matchkov V; Nilsson H; Aalkjaer C
    J Vasc Res; 2005; 42(4):301-11. PubMed ID: 15925896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells.
    Aalkjaer C; Nilsson H
    Br J Pharmacol; 2005 Mar; 144(5):605-16. PubMed ID: 15678091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na-K-ATPase regulates intercellular communication in the vascular wall via cSrc kinase-dependent connexin43 phosphorylation.
    Hangaard L; Bouzinova EV; Staehr C; Dam VS; Kim S; Xie Z; Aalkjaer C; Matchkov VV
    Am J Physiol Cell Physiol; 2017 Apr; 312(4):C385-C397. PubMed ID: 28122732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Venous Vasomotion.
    van Helden DF; Imtiaz MS
    Adv Exp Med Biol; 2019; 1124():313-328. PubMed ID: 31183833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40.
    Haddock RE; Grayson TH; Brackenbury TD; Meaney KR; Neylon CB; Sandow SL; Hill CE
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2047-56. PubMed ID: 16815985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneity and weak coupling may explain the synchronization characteristics of cells in the arterial wall.
    Jacobsen JC; Aalkjaer C; Matchkov VV; Nilsson H; Freiberg JJ; Holstein-Rathlou NH
    Philos Trans A Math Phys Eng Sci; 2008 Oct; 366(1880):3483-502. PubMed ID: 18632459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the endothelium on arterial vasomotion.
    Koenigsberger M; Sauser R; Bény JL; Meister JJ
    Biophys J; 2005 Jun; 88(6):3845-54. PubMed ID: 15792979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of membrane potential in vasomotion of isolated pressurized rat arteries.
    Oishi H; Schuster A; Lamboley M; Stergiopulos N; Meister JJ; Bény JL
    Life Sci; 2002 Sep; 71(19):2239-48. PubMed ID: 12215371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ channel-sarcoplasmic reticulum coupling: a mechanism of arterial myocyte contraction without Ca2+ influx.
    del Valle-Rodríguez A; López-Barneo J; Ureña J
    EMBO J; 2003 Sep; 22(17):4337-45. PubMed ID: 12941686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling arterial windkessel with peripheral vasomotion: modeling the effects on low-frequency oscillations.
    Baselli G; Porta A; Pagani M
    IEEE Trans Biomed Eng; 2006 Jan; 53(1):53-64. PubMed ID: 16402603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.