These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 17369641)

  • 1. Distance-based identification of structure motifs in proteins using constrained frequent subgraph mining.
    Huan J; Bandyopadhyay D; Prins J; Snoeyink J; Tropsha A; Wang W
    Comput Syst Bioinformatics Conf; 2006; ():227-38. PubMed ID: 17369641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing graph representations of protein structure for mining family-specific residue-based packing motifs.
    Huan J; Bandyopadhyay D; Wang W; Snoeyink J; Prins J; Tropsha A
    J Comput Biol; 2005; 12(6):657-71. PubMed ID: 16108709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional neighbors: inferring relationships between nonhomologous protein families using family-specific packing motifs.
    Bandyopadhyay D; Huan J; Liu J; Prins J; Snoeyink J; Wang W; Tropsha A
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1137-43. PubMed ID: 20570776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families.
    Austin RS; Provart NJ; Cutler SR
    BMC Genomics; 2007 Jun; 8():191. PubMed ID: 17594486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of family-specific residue packing motifs and their use for structure-based protein function prediction: I. Method development.
    Bandyopadhyay D; Huan J; Prins J; Snoeyink J; Wang W; Tropsha A
    J Comput Aided Mol Des; 2009 Nov; 23(11):773-84. PubMed ID: 19543979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of Functional Motifs from the Interface Region of Oligomeric Proteins Using Frequent Subgraph Mining.
    Saha TK; Katebi A; Dhifli W; Al Hasan M
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1537-1549. PubMed ID: 28961123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate classification of protein structural families using coherent subgraph analysis.
    Huan J; Wang W; Washington A; Prins J; Shah R; Tropsha A
    Pac Symp Biocomput; 2004; ():411-22. PubMed ID: 14992521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of local packing motifs in protein structures.
    Jonassen I; Eidhammer I; Taylor WR
    Proteins; 1999 Feb; 34(2):206-19. PubMed ID: 10022356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smoothing 3D protein structure motifs through graph mining and amino acid similarities.
    Dhifli W; Saidi R; Nguifo EM
    J Comput Biol; 2014 Feb; 21(2):162-72. PubMed ID: 24117330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of family-specific residue packing motifs and their use for structure-based protein function prediction: II. Case studies and applications.
    Bandyopadhyay D; Huan J; Prins J; Snoeyink J; Wang W; Tropsha A
    J Comput Aided Mol Des; 2009 Nov; 23(11):785-97. PubMed ID: 19548090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fragment transformation method to detect the protein structural motifs.
    Lu CH; Lin YS; Chen YC; Yu CS; Chang SY; Hwang JK
    Proteins; 2006 May; 63(3):636-43. PubMed ID: 16470805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based function inference using protein family-specific fingerprints.
    Bandyopadhyay D; Huan J; Liu J; Prins J; Snoeyink J; Wang W; Tropsha A
    Protein Sci; 2006 Jun; 15(6):1537-43. PubMed ID: 16731985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiently Mining Recurrent Substructures from Protein Three-Dimensional Structure Graphs.
    Saidi R; Dhifli W; Maddouri M; Mephu Nguifo E
    J Comput Biol; 2019 Jun; 26(6):561-571. PubMed ID: 30517022
    [No Abstract]   [Full Text] [Related]  

  • 14. Coupling Graphs, Efficient Algorithms and B-Cell Epitope Prediction.
    Liang Zhao ; Hoi SC; Li Z; Wong L; Nguyen H; Li J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):7-16. PubMed ID: 26355502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A relational extension of the notion of motifs: application to the common 3D protein substructures searching problem.
    Pisanti N; Soldano H; Carpentier M; Pothier J
    J Comput Biol; 2009 Dec; 16(12):1635-60. PubMed ID: 20047489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The MASH pipeline for protein function prediction and an algorithm for the geometric refinement of 3D motifs.
    Chen BY; Fofanov VY; Bryant DH; Dodson BD; Kristensen DM; Lisewski AM; Kimmel M; Lichtarge O; Kavraki LE
    J Comput Biol; 2007; 14(6):791-816. PubMed ID: 17691895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FLORA: a novel method to predict protein function from structure in diverse superfamilies.
    Redfern OC; Dessailly BH; Dallman TJ; Sillitoe I; Orengo CA
    PLoS Comput Biol; 2009 Aug; 5(8):e1000485. PubMed ID: 19714201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of generic spaced motifs using submotif pattern mining.
    Wijaya E; Rajaraman K; Yiu SM; Sung WK
    Bioinformatics; 2007 Jun; 23(12):1476-85. PubMed ID: 17483509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Socket: a program for identifying and analysing coiled-coil motifs within protein structures.
    Walshaw J; Woolfson DN
    J Mol Biol; 2001 Apr; 307(5):1427-50. PubMed ID: 11292353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing motif correlations in proteins.
    Horng JT; Huang HD; Wang SH; Chen MY; Huang SL; Hwang JK
    J Comput Chem; 2003 Dec; 24(16):2032-43. PubMed ID: 14531057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.