These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17369641)

  • 21. Scoring protein interaction decoys using exposed residues (SPIDER): a novel multibody interaction scoring function based on frequent geometric patterns of interfacial residues.
    Khashan R; Zheng W; Tropsha A
    Proteins; 2012 Aug; 80(9):2207-17. PubMed ID: 22581643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mining super-secondary structure motifs from 3d protein structures: a sequence order independent approach.
    Aung Z; Li J
    Genome Inform; 2007; 19():15-26. PubMed ID: 18546501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding hydrogen-bond patterns in proteins using network motifs.
    Rahat O; Alon U; Levy Y; Schreiber G
    Bioinformatics; 2009 Nov; 25(22):2921-8. PubMed ID: 19767299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast model-based protein homology detection without alignment.
    Hochreiter S; Heusel M; Obermayer K
    Bioinformatics; 2007 Jul; 23(14):1728-36. PubMed ID: 17488755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimized null model for protein structure networks.
    Milenković T; Filippis I; Lappe M; Przulj N
    PLoS One; 2009 Jun; 4(6):e5967. PubMed ID: 19557139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mining ChIP-chip data for transcription factor and cofactor binding sites.
    Smith AD; Sumazin P; Das D; Zhang MQ
    Bioinformatics; 2005 Jun; 21 Suppl 1():i403-12. PubMed ID: 15961485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of tertiary structure resemblance in proteins using a maximal common subgraph isomorphism algorithm.
    Grindley HM; Artymiuk PJ; Rice DW; Willett P
    J Mol Biol; 1993 Feb; 229(3):707-21. PubMed ID: 8381875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.
    Kinjo AR; Nakamura H
    Methods Mol Biol; 2013; 932():295-315. PubMed ID: 22987360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A graph-theoretic approach to the identification of three-dimensional patterns of amino acid side-chains in protein structures.
    Artymiuk PJ; Poirrette AR; Grindley HM; Rice DW; Willett P
    J Mol Biol; 1994 Oct; 243(2):327-44. PubMed ID: 7932758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterizing the regularity of tetrahedral packing motifs in protein tertiary structure.
    Day R; Lennox KP; Dahl DB; Vannucci M; Tsai JW
    Bioinformatics; 2010 Dec; 26(24):3059-66. PubMed ID: 21047817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of sequence-reactivity space for protein-protein interactions.
    Li J; Yi Z; Laskowski MC; Laskowski M; Bailey-Kellogg C
    Proteins; 2005 Feb; 58(3):661-71. PubMed ID: 15624216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards comprehensive structural motif mining for better fold annotation in the "twilight zone" of sequence dissimilarity.
    Jia Y; Huan J; Buhr V; Zhang J; Carayannopoulos LN
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S46. PubMed ID: 19208148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient randomized algorithm for contact-based NMR backbone resonance assignment.
    Kamisetty H; Bailey-Kellogg C; Pandurangan G
    Bioinformatics; 2006 Jan; 22(2):172-80. PubMed ID: 16287932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mining Conditional Phosphorylation Motifs.
    Liu X; Wu J; Gong H; Deng S; He Z
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):915-27. PubMed ID: 26356863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional annotation by sequence-weighted structure alignments: statistical analysis and case studies from the Protein 3000 structural genomics project in Japan.
    Standley DM; Toh H; Nakamura H
    Proteins; 2008 Sep; 72(4):1333-51. PubMed ID: 18384072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting protein functional sites with phylogenetic motifs.
    La D; Sutch B; Livesay DR
    Proteins; 2005 Feb; 58(2):309-20. PubMed ID: 15573397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simplicial edge representation of protein structures and alpha contact potential with confidence measure.
    Li X; Hu C; Liang J
    Proteins; 2003 Dec; 53(4):792-805. PubMed ID: 14635122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SEGA: semiglobal graph alignment for structure-based protein comparison.
    Mernberger M; Klebe G; Hüllermeier E
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1330-43. PubMed ID: 21339532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards a structural classification of phosphate binding sites in protein-nucleotide complexes: an automated all-against-all structural comparison using geometric matching.
    Brakoulias A; Jackson RM
    Proteins; 2004 Aug; 56(2):250-60. PubMed ID: 15211509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A structure filter for the Eukaryotic Linear Motif Resource.
    Via A; Gould CM; Gemünd C; Gibson TJ; Helmer-Citterich M
    BMC Bioinformatics; 2009 Oct; 10():351. PubMed ID: 19852836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.