These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 17369650)
21. A novel method for protein secondary structure prediction using dual-layer SVM and profiles. Guo J; Chen H; Sun Z; Lin Y Proteins; 2004 Mar; 54(4):738-43. PubMed ID: 14997569 [TBL] [Abstract][Full Text] [Related]
22. Improved protein secondary structure prediction using support vector machine with a new encoding scheme and an advanced tertiary classifier. Hu HJ; Pan Y; Harrison R; Tai PC IEEE Trans Nanobioscience; 2004 Dec; 3(4):265-71. PubMed ID: 15631138 [TBL] [Abstract][Full Text] [Related]
23. PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria. Gardy JL; Spencer C; Wang K; Ester M; Tusnády GE; Simon I; Hua S; deFays K; Lambert C; Nakai K; Brinkman FS Nucleic Acids Res; 2003 Jul; 31(13):3613-7. PubMed ID: 12824378 [TBL] [Abstract][Full Text] [Related]
24. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model. Saini H; Raicar G; Dehzangi A; Lal S; Sharma A J Theor Biol; 2015 Dec; 386():25-33. PubMed ID: 26386142 [TBL] [Abstract][Full Text] [Related]
25. Dimensionality reduction for protein secondary structure and solvent accesibility prediction. Aydin Z; Kaynar O; Görmez Y J Bioinform Comput Biol; 2018 Oct; 16(5):1850020. PubMed ID: 30353781 [TBL] [Abstract][Full Text] [Related]
26. Improved method for predicting beta-turn using support vector machine. Zhang Q; Yoon S; Welsh WJ Bioinformatics; 2005 May; 21(10):2370-4. PubMed ID: 15797917 [TBL] [Abstract][Full Text] [Related]
27. Using Nearest Feature Line and Tunable Nearest Neighbor methods for prediction of protein subcellular locations. Gao QB; Wang ZZ Comput Biol Chem; 2005 Oct; 29(5):388-92. PubMed ID: 16213794 [TBL] [Abstract][Full Text] [Related]
28. Feature selection and the class imbalance problem in predicting protein function from sequence. Al-Shahib A; Breitling R; Gilbert D Appl Bioinformatics; 2005; 4(3):195-203. PubMed ID: 16231961 [TBL] [Abstract][Full Text] [Related]
29. FGsub: Fusarium graminearum protein subcellular localizations predicted from primary structures. Sun C; Zhao XM; Tang W; Chen L BMC Syst Biol; 2010 Sep; 4 Suppl 2(Suppl 2):S12. PubMed ID: 20840726 [TBL] [Abstract][Full Text] [Related]
30. MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Höglund A; Dönnes P; Blum T; Adolph HW; Kohlbacher O Bioinformatics; 2006 May; 22(10):1158-65. PubMed ID: 16428265 [TBL] [Abstract][Full Text] [Related]
31. Two multi-classification strategies used on SVM to predict protein structural classes by using auto covariance. Wu J; Li YZ; Li ML; Yu LZ Interdiscip Sci; 2009 Dec; 1(4):315-9. PubMed ID: 20640811 [TBL] [Abstract][Full Text] [Related]
32. Protein subcellular multi-localization prediction using a min-max modular support vector machine. Yang Y; Lu BL Int J Neural Syst; 2010 Feb; 20(1):13-28. PubMed ID: 20180250 [TBL] [Abstract][Full Text] [Related]
33. Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein. Raghava GP; Han JH BMC Bioinformatics; 2005 Mar; 6():59. PubMed ID: 15773999 [TBL] [Abstract][Full Text] [Related]
34. Protein subcellular localization prediction for Gram-negative bacteria using amino acid subalphabets and a combination of multiple support vector machines. Wang J; Sung WK; Krishnan A; Li KB BMC Bioinformatics; 2005 Jul; 6():174. PubMed ID: 16011808 [TBL] [Abstract][Full Text] [Related]
35. Protein subcellular localization prediction using multiple kernel learning based support vector machine. Hasan MA; Ahmad S; Molla MK Mol Biosyst; 2017 Mar; 13(4):785-795. PubMed ID: 28247893 [TBL] [Abstract][Full Text] [Related]
36. Novel structure-driven features for accurate prediction of protein structural class. Kong L; Zhang L Genomics; 2014 Apr; 103(4):292-7. PubMed ID: 24747329 [TBL] [Abstract][Full Text] [Related]
37. Predicting the state of cysteines based on sequence information. Guang X; Guo Y; Xiao J; Wang X; Sun J; Xiong W; Li M J Theor Biol; 2010 Dec; 267(3):312-8. PubMed ID: 20826168 [TBL] [Abstract][Full Text] [Related]
38. Identification of catalytic residues from protein structure using support vector machine with sequence and structural features. Pugalenthi G; Kumar KK; Suganthan PN; Gangal R Biochem Biophys Res Commun; 2008 Mar; 367(3):630-4. PubMed ID: 18206645 [TBL] [Abstract][Full Text] [Related]
39. Semi-supervised protein subcellular localization. Xu Q; Hu DH; Xue H; Yu W; Yang Q BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S47. PubMed ID: 19208149 [TBL] [Abstract][Full Text] [Related]
40. Protein fold recognition using the gradient boost algorithm. Jiao F; Xu J; Yu L; Schuurmans D Comput Syst Bioinformatics Conf; 2006; ():43-53. PubMed ID: 17369624 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]