These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 1736996)

  • 21. Specificity from steric restrictions in the guanosine binding pocket of a group I ribozyme.
    Russell R; Herschlag D
    RNA; 1999 Feb; 5(2):158-66. PubMed ID: 10024168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct demonstration of the catalytic role of binding interactions in an enzymatic reaction.
    Narlikar GJ; Herschlag D
    Biochemistry; 1998 Jul; 37(28):9902-11. PubMed ID: 9665695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis.
    Engelhardt MA; Doherty EA; Knitt DS; Doudna JA; Herschlag D
    Biochemistry; 2000 Mar; 39(10):2639-51. PubMed ID: 10704214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site.
    Guo F; Gooding AR; Cech TR
    Mol Cell; 2004 Nov; 16(3):351-62. PubMed ID: 15525509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization.
    Strobel SA; Cech TR
    Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Guanosine binding to the Tetrahymena ribozyme: thermodynamic coupling with oligonucleotide binding.
    McConnell TS; Cech TR; Herschlag D
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8362-6. PubMed ID: 8378306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Addition of an extra substrate binding site and partial destabilization of stem structures in HDV ribozyme give rise to high sequence-specificity for its target RNA.
    Hori T; Guo F; Uesugi S
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(4-6):489-501. PubMed ID: 16838841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Guiding ribozyme cleavage through motif recognition: the mechanism of cleavage site selection by a group ii intron ribozyme.
    Su LJ; Qin PZ; Michels WJ; Pyle AM
    J Mol Biol; 2001 Mar; 306(4):655-68. PubMed ID: 11243778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescence-detected stopped flow with a pyrene labeled substrate reveals that guanosine facilitates docking of the 5' cleavage site into a high free energy binding mode in the Tetrahymena ribozyme.
    Bevilacqua PC; Li Y; Turner DH
    Biochemistry; 1994 Sep; 33(37):11340-8. PubMed ID: 7727385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme.
    Pyle AM; Murphy FL; Cech TR
    Nature; 1992 Jul; 358(6382):123-8. PubMed ID: 1377367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2'-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme.
    Shan SO; Herschlag D
    Biochemistry; 1999 Aug; 38(34):10958-75. PubMed ID: 10460151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploration of the transition state for tertiary structure formation between an RNA helix and a large structured RNA.
    Bartley LE; Zhuang X; Das R; Chu S; Herschlag D
    J Mol Biol; 2003 May; 328(5):1011-26. PubMed ID: 12729738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site.
    Forconi M; Sengupta RN; Piccirilli JA; Herschlag D
    Biochemistry; 2010 Mar; 49(12):2753-62. PubMed ID: 20175542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure-function analysis from the outside in: long-range tertiary contacts in RNA exhibit distinct catalytic roles.
    Benz-Moy TL; Herschlag D
    Biochemistry; 2011 Oct; 50(40):8733-55. PubMed ID: 21815635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leaving group stabilization by metal ion coordination and hydrogen bond donation is an evolutionarily conserved feature of group I introns.
    Kuo LY; Piccirilli JA
    Biochim Biophys Acta; 2001 Dec; 1522(3):158-66. PubMed ID: 11779630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA.
    Pan J; Deras ML; Woodson SA
    J Mol Biol; 2000 Feb; 296(1):133-44. PubMed ID: 10656822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A hammerhead ribozyme allows synthesis of a new form of the Tetrahymena ribozyme homogeneous in length with a 3' end blocked for transesterification.
    Grosshans CA; Cech TR
    Nucleic Acids Res; 1991 Jul; 19(14):3875-80. PubMed ID: 1650453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme.
    Bevilacqua PC; Sugimoto N; Turner DH
    Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An important base triple anchors the substrate helix recognition surface within the Tetrahymena ribozyme active site.
    Szewczak AA; Ortoleva-Donnelly L; Zivarts MV; Oyelere AK; Kazantsev AV; Strobel SA
    Proc Natl Acad Sci U S A; 1999 Sep; 96(20):11183-8. PubMed ID: 10500151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.