BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 1737008)

  • 1. Engineering surface charge. 1. A method for detecting subunit exchange in Escherichia coli glutathione reductase.
    Deonarain MP; Scrutton NS; Perham RN
    Biochemistry; 1992 Feb; 31(5):1491-7. PubMed ID: 1737008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering surface charge. 2. A method for purifying heterodimers of Escherichia coli glutathione reductase.
    Deonarain MP; Scrutton NS; Perham RN
    Biochemistry; 1992 Feb; 31(5):1498-504. PubMed ID: 1737009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active site complementation in engineered heterodimers of Escherichia coli glutathione reductase created in vivo.
    Scrutton NS; Berry A; Deonarain MP; Perham RN
    Proc Biol Sci; 1990 Dec; 242(1305):217-24. PubMed ID: 1983037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperativity induced by a single mutation at the subunit interface of a dimeric enzyme: glutathione reductase.
    Scrutton NS; Deonarain MP; Berry A; Perham RN
    Science; 1992 Nov; 258(5085):1140-3. PubMed ID: 1439821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altering kinetic mechanism and enzyme stability by mutagenesis of the dimer interface of glutathione reductase.
    Bashir A; Perham RN; Scrutton NS; Berry A
    Biochem J; 1995 Dec; 312 ( Pt 2)(Pt 2):527-33. PubMed ID: 8526866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed mutagenesis of the redox-active disulphide bridge in glutathione reductase from Escherichia coli.
    Deonarain MP; Scrutton NS; Berry A; Perham RN
    Proc Biol Sci; 1990 Sep; 241(1302):179-86. PubMed ID: 1979442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of glutathione reductase encoded by a cloned and over-expressed gene in Escherichia coli.
    Scrutton NS; Berry A; Perham RN
    Biochem J; 1987 Aug; 245(3):875-80. PubMed ID: 3311037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding of the four domains and dimerization are impaired by the Gly446-->Glu exchange in human glutathione reductase. Implications for the design of antiparasitic drugs.
    Nordhoff A; Bücheler US; Werner D; Schirmer RH
    Biochemistry; 1993 Apr; 32(15):4060-6. PubMed ID: 8097111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of an intersubunit disulphide bridge in glutathione reductase from Escherichia coli.
    Scrutton NS; Berry A; Perham RN
    FEBS Lett; 1988 Dec; 241(1-2):46-50. PubMed ID: 3058515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational and proteolytic studies on a flexible loop in glutathione synthetase from Escherichia coli B: the loop and arginine 233 are critical for the catalytic reaction.
    Tanaka T; Kato H; Nishioka T; Oda J
    Biochemistry; 1992 Mar; 31(8):2259-65. PubMed ID: 1540581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The three-dimensional structure of glutathione reductase from Escherichia coli at 3.0 A resolution.
    Ermler U; Schulz GE
    Proteins; 1991; 9(3):174-9. PubMed ID: 2006135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox enzyme engineering: conversion of human glutathione reductase into a trypanothione reductase.
    Bradley M; Bücheler US; Walsh CT
    Biochemistry; 1991 Jun; 30(25):6124-7. PubMed ID: 2059620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of the evolutionarily conserved glycine residue in the N-terminal region of human cystatin C (Gly-11) for cysteine endopeptidase inhibition.
    Hall A; Dalbøge H; Grubb A; Abrahamson M
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):123-9. PubMed ID: 8471031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized heterologous expression of glutathione reductase from Cyanobacterium anabaena PCC 7120 and characterization of the recombinant protein.
    Jiang F; Mannervik B
    Protein Expr Purif; 1999 Feb; 15(1):92-8. PubMed ID: 10024475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solubilizing buried domains of proteins: a self-assembling interface domain from glutathione reductase.
    Leistler B; Perham RN
    Biochemistry; 1994 Mar; 33(10):2773-81. PubMed ID: 8130189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switching kinetic mechanism and putative proton donor by directed mutagenesis of glutathione reductase.
    Berry A; Scrutton NS; Perham RN
    Biochemistry; 1989 Feb; 28(3):1264-9. PubMed ID: 2540822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural differences between wild-type NADP-dependent glutathione reductase from Escherichia coli and a redesigned NAD-dependent mutant.
    Mittl PR; Berry A; Scrutton NS; Perham RN; Schulz GE
    J Mol Biol; 1993 May; 231(2):191-5. PubMed ID: 8510142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic studies on CDP-6-deoxy-delta 3,4-glucoseen reductase: the role of cysteine residues in catalysis as probed by chemical modification and site-directed mutagenesis.
    Ploux O; Lei Y; Vatanen K; Liu HW
    Biochemistry; 1995 Apr; 34(13):4159-68. PubMed ID: 7703227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of glutathione reductase from Escherichia coli at 1.86 A resolution: comparison with the enzyme from human erythrocytes.
    Mittl PR; Schulz GE
    Protein Sci; 1994 May; 3(5):799-809. PubMed ID: 8061609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of pyridine nucleotide specificity of nitrate reductase: mutagenesis of recombinant cytochrome b reductase fragment of Neurospora crassa NADPH:Nitrate reductase.
    Shiraishi N; Croy C; Kaur J; Campbell WH
    Arch Biochem Biophys; 1998 Oct; 358(1):104-15. PubMed ID: 9750171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.