BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1737018)

  • 1. A fully active variant of dihydrofolate reductase with a circularly permuted sequence.
    Buchwalder A; Szadkowski H; Kirschner K
    Biochemistry; 1992 Feb; 31(6):1621-30. PubMed ID: 1737018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circularly permuted dihydrofolate reductase of E. coli has functional activity and a destabilized tertiary structure.
    Protasova NYu ; Kireeva ML; Murzina NV; Murzin AG; Uversky VN; Gryaznova OI; Gudkov AT
    Protein Eng; 1994 Nov; 7(11):1373-7. PubMed ID: 7700869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the length of a glycine linker connecting the N-and C-termini of a circularly permuted dihydrofolate reductase.
    Iwakura M; Nakamura T
    Protein Eng; 1998 Aug; 11(8):707-13. PubMed ID: 9749924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of point mutations in a hinge region on the stability, folding, and enzymatic activity of Escherichia coli dihydrofolate reductase.
    Ahrweiler PM; Frieden C
    Biochemistry; 1991 Aug; 30(31):7801-9. PubMed ID: 1868058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of point mutations at the flexible loop glycine-67 of Escherichia coli dihydrofolate reductase on its stability and function.
    Ohmae E; Iriyama K; Ichihara S; Gekko K
    J Biochem; 1996 Apr; 119(4):703-10. PubMed ID: 8743572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a synthetic gene for an R-plasmid-encoded dihydrofolate reductase and studies on the role of the N-terminus in the protein.
    Reece LJ; Nichols R; Ogden RC; Howell EE
    Biochemistry; 1991 Nov; 30(45):10895-904. PubMed ID: 1932013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed deletion mutants of a carboxyl-terminal region of human dihydrofolate reductase.
    Bullerjahn AM; Freisheim JH
    J Biol Chem; 1992 Jan; 267(2):864-70. PubMed ID: 1730674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circularly permuted dihydrofolate reductase possesses all the properties of the molten globule state, but can resume functional tertiary structure by interaction with its ligands.
    Uversky VN; Kutyshenko VP; Protasova NYu ; Rogov VV; Vassilenko KS; Gudkov AT
    Protein Sci; 1996 Sep; 5(9):1844-51. PubMed ID: 8880908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the role of two hydrophobic active site residues in the human dihydrofolate reductase by site-directed mutagenesis.
    Schweitzer BI; Srimatkandada S; Gritsman H; Sheridan R; Venkataraghavan R; Bertino JR
    J Biol Chem; 1989 Dec; 264(34):20786-95. PubMed ID: 2684985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of loop region residues 40-46 in human dihydrofolate reductase as revealed by site-directed mutagenesis.
    Tan XH; Huang SM; Ratnam M; Thompson PD; Freisheim JH
    J Biol Chem; 1990 May; 265(14):8027-32. PubMed ID: 2186034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correct folding of circularly permuted variants of a beta alpha barrel enzyme in vivo.
    Luger K; Hommel U; Herold M; Hofsteenge J; Kirschner K
    Science; 1989 Jan; 243(4888):206-10. PubMed ID: 2643160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and site-directed mutagenesis of human dihydrofolate reductase.
    Prendergast NJ; Delcamp TJ; Smith PL; Freisheim JH
    Biochemistry; 1988 May; 27(10):3664-71. PubMed ID: 3044447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circular permutation analysis as a method for distinction of functional elements in the M20 loop of Escherichia coli dihydrofolate reductase.
    Nakamura T; Iwakura M
    J Biol Chem; 1999 Jul; 274(27):19041-7. PubMed ID: 10383405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In search of circular permuted variants of Escherichia coli dihydrofolate reductase.
    Iwakura M
    Biosci Biotechnol Biochem; 1998 Apr; 62(4):778-81. PubMed ID: 9614709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: comparison of wild-type protein and active-site mutant D27E.
    Ohmae E; Miyashita Y; Tate S; Gekko K; Kitazawa S; Kitahara R; Kuwajima K
    Biochim Biophys Acta; 2013 Dec; 1834(12):2782-94. PubMed ID: 24140567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramolecular catalysis of a proline isomerization reaction in the folding of dihydrofolate reductase.
    Texter FL; Spencer DB; Rosenstein R; Matthews CR
    Biochemistry; 1992 Jun; 31(25):5687-91. PubMed ID: 1610817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact on catalysis of secondary structural manipulation of the alpha C-helix of Escherichia coli dihydrofolate reductase.
    Li LY; Benkovic SJ
    Biochemistry; 1991 Feb; 30(6):1470-8. PubMed ID: 1993166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point mutations at glycine-121 of Escherichia coli dihydrofolate reductase: important roles of a flexible loop in the stability and function.
    Gekko K; Kunori Y; Takeuchi H; Ichihara S; Kodama M
    J Biochem; 1994 Jul; 116(1):34-41. PubMed ID: 7798183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of point mutations at the flexible loop alanine-145 of Escherichia coli dihydrofolate reductase on its stability and function.
    Ohmae E; Ishimura K; Iwakura M; Gekko K
    J Biochem; 1998 May; 123(5):839-46. PubMed ID: 9562614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.