These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1737062)

  • 1. Red cell filterability determined using the cell transit time analyzer (CTTA): effects of ATP depletion and changes in calcium concentration.
    Rendell M; Luu T; Quinlan E; Knox S; Fox M; Kelly S; Kahler K
    Biochim Biophys Acta; 1992 Feb; 1133(3):293-300. PubMed ID: 1737062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of calcium and A23187 on deformability and volume of human red blood cells.
    Dodson RA; Hinds TR; Vincenzi FF
    Blood Cells; 1987; 12(3):555-64. PubMed ID: 3115342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separate mechanisms of deformability loss in ATP-depleted and Ca-loaded erythrocytes.
    Clark MR; Mohandas N; Feo C; Jacobs MS; Shohet SB
    J Clin Invest; 1981 Feb; 67(2):531-9. PubMed ID: 6780609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic dependence of red cell deformability.
    Weed RI; LaCelle PL; Merrill EW
    J Clin Invest; 1969 May; 48(5):795-809. PubMed ID: 4388591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Ca2+ on red cell deformability and adaptation to sphering agents.
    Rogausch H
    Pflugers Arch; 1978 Jan; 373(1):43-7. PubMed ID: 345218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of calcium permeabilization and membrane-attached hemoglobin on erythrocyte deformability.
    Friederichs E; Farley RA; Meiselman HJ
    Am J Hematol; 1992 Nov; 41(3):170-7. PubMed ID: 1415191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutathione regeneration in calcium-loaded erythrocytes: a possible relationship among calcium accumulation, ATP decrement and oxidative damage.
    Kurata M; Suzuki M
    Comp Biochem Physiol B Biochem Mol Biol; 1994; 109(2-3):305-12. PubMed ID: 7553347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of increasing temperature on skin blood flow and red cell deformability.
    Rendell MS; Kelly ST; Bamisedun O; Luu T; Finney DA; Knox S
    Clin Physiol; 1993 May; 13(3):235-45. PubMed ID: 8519159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors that limit whole cell deformability in erythrocytes after calcium loading and ATP depletion.
    Mohandas N; Clark MR; Feo C; Jacobs MS; Shohet SB
    Prog Clin Biol Res; 1981; 55():423-37. PubMed ID: 6794036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RBC filterability, oxygen saturation, ATP intracellular stock, and cerebral microcirculation.
    Hermann T; Vasselon C; Geyssant A; Healy JC
    Scand J Clin Lab Invest Suppl; 1981; 156():213-6. PubMed ID: 6948389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of procaine HCLl on ATP: calcium-dependent alterations in red cell shape and deformability.
    Palek J; Liu A; Liu D; Snyder LM; Fortier NL; Njoku G; Kiernan F; Funk D; Crusberg T
    Blood; 1977 Jul; 50(1):155-64. PubMed ID: 326314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the functional state of the erythrocyte membrane: significance for red cell filterability and blood viscosity.
    Larsson H; Persson SU; Hedner P
    Scand J Clin Lab Invest; 1990 Apr; 50(2):177-81. PubMed ID: 2339280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of calcium ions and ionophore A23187 on microrheological characteristics of erythrocytes by new model ektacytometry.
    Chunyi W; Yanjun Z; Weibo K
    Clin Hemorheol Microcirc; 2001; 24(1):19-23. PubMed ID: 11345230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of glycemic control on red cell deformability determined by using the cell transit time analyzer.
    Rendell M; Fox M; Knox S; Lastovica J; Kirchain W; Meiselman HJ
    J Lab Clin Med; 1991 Jun; 117(6):500-4. PubMed ID: 2045718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of verapamil on calcium-induced rigidity and on filterability of red blood cells from healthy volunteers and patients with progressive systemic sclerosis.
    Sowemimo-Coker SO; Kovacs IB; Kirby JD; Turner P
    Br J Clin Pharmacol; 1985 Jun; 19(6):731-7. PubMed ID: 4027116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK; Siddle K
    Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitroprusside inhibits calcium-induced impairment of red blood cell deformability.
    Barodka V; Mohanty JG; Mustafa AK; Santhanam L; Nyhan A; Bhunia AK; Sikka G; Nyhan D; Berkowitz DE; Rifkind JM
    Transfusion; 2014 Feb; 54(2):434-44. PubMed ID: 23781865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium and the malaria parasite: parasite maturation and the loss of red cell deformability.
    Krogstad DJ; Sutera SP; Marvel JS; Gluzman IY; Boylan CW; Colca JR; Williamson JR; Schlesinger PH
    Blood Cells; 1991; 17(1):229-41; discussion 242-8. PubMed ID: 1902127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors raising intracellular calcium increase red blood cell heterogeneity in density and critical osmolality.
    Lisovskaya IL; Rozenberg JM; Nesterenko VM; Samokhina AA
    Med Sci Monit; 2004 Mar; 10(3):BR67-76. PubMed ID: 14976462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of red blood cell filterability by Ca2+ influx and cAMP-mediated signaling pathways.
    Oonishi T; Sakashita K; Uyesaka N
    Am J Physiol; 1997 Dec; 273(6):C1828-34. PubMed ID: 9435486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.