These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 17371499)

  • 1. Neural mechanisms of detecting and orienting attention toward unattended threatening somatosensory target stimuli. II. Intensity effects.
    Dowman R
    Psychophysiology; 2007 May; 44(3):420-30. PubMed ID: 17371499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural mechanisms of detecting and orienting attention toward unattended threatening somatosensory targets. I. Intermodal effects.
    Dowman R
    Psychophysiology; 2007 May; 44(3):407-19. PubMed ID: 17371498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human intracranially-recorded cortical responses evoked by painful electrical stimulation of the sural nerve.
    Dowman R; Darcey T; Barkan H; Thadani V; Roberts D
    Neuroimage; 2007 Jan; 34(2):743-63. PubMed ID: 17097306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of response conflict on pain-evoked medial prefrontal cortex activity.
    Dowman R; Glebus G; Shinners L
    Psychophysiology; 2005 Sep; 42(5):555-8. PubMed ID: 16176377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An artificial neural network model of orienting attention toward threatening somatosensory stimuli.
    Dowman R; Ben-Avraham D
    Psychophysiology; 2008 Mar; 45(2):229-39. PubMed ID: 17971058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the pain-evoked negative difference potential in dual-task response conflict.
    Dowman R
    Eur J Pain; 2004 Dec; 8(6):567-78. PubMed ID: 15531225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological indices of orienting attention toward pain.
    Dowman R
    Psychophysiology; 2004 Sep; 41(5):749-61. PubMed ID: 15318881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different modalities of painful somatosensory stimulations affect anticipatory cortical processes: a high-resolution EEG study.
    Babiloni C; Brancucci A; Capotosto P; Del Percio C; Romani GL; Arendt-Nielsen L; Rossini PM
    Brain Res Bull; 2007 Mar; 71(5):475-84. PubMed ID: 17259016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distraction affects frontal alpha rhythms related to expectancy of pain: an EEG study.
    Del Percio C; Le Pera D; Arendt-Nielsen L; Babiloni C; Brancucci A; Chen AC; De Armas L; Miliucci R; Restuccia D; Valeriani M; Rossini PM
    Neuroimage; 2006 Jul; 31(3):1268-77. PubMed ID: 16529953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pain-related negative difference potential: a direct measure of central pain pathway activity or of interactions between the innocuous somatosensory and pain pathways?
    Dowman R; Schell S
    Neurophysiol Clin; 1999 Oct; 29(5):423-42. PubMed ID: 10587952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct effects of attention and affect on pain perception and somatosensory evoked potentials.
    Kenntner-Mabiala R; Andreatta M; Wieser MJ; Mühlberger A; Pauli P
    Biol Psychol; 2008 Apr; 78(1):114-22. PubMed ID: 18328614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of somatic threat feature detectors in the attentional bias toward pain: effects of spatial attention.
    Dowman R
    Psychophysiology; 2011 Mar; 48(3):397-409. PubMed ID: 20636292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pain response in depersonalization: a functional imaging study using hypnosis in healthy subjects.
    Röder CH; Michal M; Overbeck G; van de Ven VG; Linden DE
    Psychother Psychosom; 2007; 76(2):115-21. PubMed ID: 17230052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of somatosensory off responses.
    Spackman L; Boyd S; Towell T
    Brain Res; 2006 Oct; 1114(1):53-62. PubMed ID: 16952337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes in somatosensory processing in cerebral palsy and healthy individuals.
    Riquelme I; Montoya P
    Clin Neurophysiol; 2010 Aug; 121(8):1314-20. PubMed ID: 20363181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orienting and maintenance of spatial attention in audition and vision: an event-related brain potential study.
    Salmi J; Rinne T; Degerman A; Alho K
    Eur J Neurosci; 2007 Jun; 25(12):3725-33. PubMed ID: 17610592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Affective modulation of brain potentials to painful and nonpainful stimuli.
    Kenntner-Mabiala R; Pauli P
    Psychophysiology; 2005 Sep; 42(5):559-67. PubMed ID: 16176378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG source analysis and fMRI reveal two electrical sources in the fronto-parietal operculum during subepidermal finger stimulation.
    Stancák A; Polácek H; Vrána J; Rachmanová R; Hoechstetter K; Tintra J; Scherg M
    Neuroimage; 2005 Mar; 25(1):8-20. PubMed ID: 15734339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex differences in sensorimotor mu rhythms during selective attentional processing.
    Popovich C; Dockstader C; Cheyne D; Tannock R
    Neuropsychologia; 2010 Dec; 48(14):4102-10. PubMed ID: 20951711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential modulation of temporal and frontal components of the somatosensory N140 and the effect of interstimulus interval in a selective attention task.
    Kida T; Nishihira Y; Wasaka T; Nakata H; Sakamoto M
    Brain Res Cogn Brain Res; 2004 Mar; 19(1):33-9. PubMed ID: 14972356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.