These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17371761)

  • 21. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf.
    Lopez-Anido CB; Vatén A; Smoot NK; Sharma N; Guo V; Gong Y; Anleu Gil MX; Weimer AK; Bergmann DC
    Dev Cell; 2021 Apr; 56(7):1043-1055.e4. PubMed ID: 33823130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The plant stomatal lineage at a glance.
    Lee LR; Bergmann DC
    J Cell Sci; 2019 Apr; 132(8):. PubMed ID: 31028153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves.
    Hara K; Yokoo T; Kajita R; Onishi T; Yahata S; Peterson KM; Torii KU; Kakimoto T
    Plant Cell Physiol; 2009 Jun; 50(6):1019-31. PubMed ID: 19435754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequence and function of basic helix-loop-helix proteins required for stomatal development in Arabidopsis are deeply conserved in land plants.
    MacAlister CA; Bergmann DC
    Evol Dev; 2011; 13(2):182-92. PubMed ID: 21410874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorylation of Serine 186 of bHLH Transcription Factor SPEECHLESS Promotes Stomatal Development in Arabidopsis.
    Yang KZ; Jiang M; Wang M; Xue S; Zhu LL; Wang HZ; Zou JJ; Lee EK; Sack F; Le J
    Mol Plant; 2015 May; 8(5):783-95. PubMed ID: 25680231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Down-Regulating the Expression of 53 Soybean Transcription Factor Genes Uncovers a Role for SPEECHLESS in Initiating Stomatal Cell Lineages during Embryo Development.
    Danzer J; Mellott E; Bui AQ; Le BH; Martin P; Hashimoto M; Perez-Lesher J; Chen M; Pelletier JM; Somers DA; Goldberg RB; Harada JJ
    Plant Physiol; 2015 Jul; 168(3):1025-35. PubMed ID: 25963149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell Cycle Dynamics during Stomatal Development: Window of MUTE Action and Ramification of Its Loss-of-Function on an Uncommitted Precursor.
    Zuch DT; Herrmann A; Kim ED; Torii KU
    Plant Cell Physiol; 2023 Mar; 64(3):325-335. PubMed ID: 36609867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell fate transitions during stomatal development.
    Serna L
    Bioessays; 2009 Aug; 31(8):865-73. PubMed ID: 19565615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stomatal development.
    Bergmann DC; Sack FD
    Annu Rev Plant Biol; 2007; 58():163-81. PubMed ID: 17201685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FAMA is an essential component for the differentiation of two distinct cell types, myrosin cells and guard cells, in Arabidopsis.
    Shirakawa M; Ueda H; Nagano AJ; Shimada T; Kohchi T; Hara-Nishimura I
    Plant Cell; 2014 Oct; 26(10):4039-52. PubMed ID: 25304202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stomatal patterning and differentiation by synergistic interactions of receptor kinases.
    Shpak ED; McAbee JM; Pillitteri LJ; Torii KU
    Science; 2005 Jul; 309(5732):290-3. PubMed ID: 16002616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of Asymmetric Division Diversity through Cytokinin and SPEECHLESS Regulatory Interactions in the Arabidopsis Stomatal Lineage.
    Vatén A; Soyars CL; Tarr PT; Nimchuk ZL; Bergmann DC
    Dev Cell; 2018 Oct; 47(1):53-66.e5. PubMed ID: 30197241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module.
    Matos JL; Lau OS; Hachez C; Cruz-Ramírez A; Scheres B; Bergmann DC
    Elife; 2014 Oct; 3():. PubMed ID: 25303364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep functional redundancy between FAMA and FOUR LIPS in stomatal development.
    Lee E; Lucas JR; Sack FD
    Plant J; 2014 May; 78(4):555-65. PubMed ID: 24571519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells.
    Lau OS; Davies KA; Chang J; Adrian J; Rowe MH; Ballenger CE; Bergmann DC
    Science; 2014 Sep; 345(6204):1605-9. PubMed ID: 25190717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship between brassinosteroids and genes controlling stomatal production in the Arabidopsis hypocotyl.
    Fuentes S; Cañamero RC; Serna L
    Int J Dev Biol; 2012; 56(9):675-80. PubMed ID: 23124966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stomatal development: cross talk puts mouths in place.
    Nadeau JA; Sack FD
    Trends Plant Sci; 2003 Jun; 8(6):294-9. PubMed ID: 12818664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant science. Pores in place.
    Sack FD; Chen JG
    Science; 2009 Jan; 323(5914):592-3. PubMed ID: 19179518
    [No Abstract]   [Full Text] [Related]  

  • 39. SPEECHLESS integrates brassinosteroid and stomata signalling pathways.
    Gudesblat GE; Schneider-Pizoń J; Betti C; Mayerhofer J; Vanhoutte I; van Dongen W; Boeren S; Zhiponova M; de Vries S; Jonak C; Russinova E
    Nat Cell Biol; 2012 Apr; 14(5):548-54. PubMed ID: 22466366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Linking cell cycle to stomatal differentiation.
    Han SK; Torii KU
    Curr Opin Plant Biol; 2019 Oct; 51():66-73. PubMed ID: 31075538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.