These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
447 related articles for article (PubMed ID: 17372656)
1. An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells. Bodenmiller B; Mueller LN; Pedrioli PG; Pflieger D; Jünger MA; Eng JK; Aebersold R; Tao WA Mol Biosyst; 2007 Apr; 3(4):275-86. PubMed ID: 17372656 [TBL] [Abstract][Full Text] [Related]
2. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456 [TBL] [Abstract][Full Text] [Related]
3. Electron transfer dissociation in conjunction with collision activation to investigate the Drosophila melanogaster phosphoproteome. Domon B; Bodenmiller B; Carapito C; Hao Z; Huehmer A; Aebersold R J Proteome Res; 2009 Jun; 8(6):2633-9. PubMed ID: 19435317 [TBL] [Abstract][Full Text] [Related]
4. Analysis of protein phosphorylation by hypothesis-driven multiple-stage mass spectrometry. Chang EJ; Archambault V; McLachlin DT; Krutchinsky AN; Chait BT Anal Chem; 2004 Aug; 76(15):4472-83. PubMed ID: 15283590 [TBL] [Abstract][Full Text] [Related]
5. Selective enrichment in phosphopeptides for the identification of phosphorylated mitochondrial proteins. Pocsfalvi G Methods Enzymol; 2009; 457():81-96. PubMed ID: 19426863 [TBL] [Abstract][Full Text] [Related]
6. Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells. Bridon G; Bonneil E; Muratore-Schroeder T; Caron-Lizotte O; Thibault P J Proteome Res; 2012 Feb; 11(2):927-40. PubMed ID: 22059388 [TBL] [Abstract][Full Text] [Related]
7. Phosphoproteomics toolbox: computational biology, protein chemistry and mass spectrometry. Hjerrild M; Gammeltoft S FEBS Lett; 2006 Sep; 580(20):4764-70. PubMed ID: 16914146 [TBL] [Abstract][Full Text] [Related]
8. Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy. Sui S; Wang J; Yang B; Song L; Zhang J; Chen M; Liu J; Lu Z; Cai Y; Chen S; Bi W; Zhu Y; He F; Qian X Proteomics; 2008 May; 8(10):2024-34. PubMed ID: 18491316 [TBL] [Abstract][Full Text] [Related]
9. Tools for analyzing the phosphoproteome and other phosphorylated biomolecules: a review. Leitner A; Sturm M; Lindner W Anal Chim Acta; 2011 Oct; 703(1):19-30. PubMed ID: 21843671 [TBL] [Abstract][Full Text] [Related]
10. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Bodenmiller B; Mueller LN; Mueller M; Domon B; Aebersold R Nat Methods; 2007 Mar; 4(3):231-7. PubMed ID: 17293869 [TBL] [Abstract][Full Text] [Related]
11. Phosphopeptide fragmentation and analysis by mass spectrometry. Boersema PJ; Mohammed S; Heck AJ J Mass Spectrom; 2009 Jun; 44(6):861-78. PubMed ID: 19504542 [TBL] [Abstract][Full Text] [Related]
12. Mining phosphopeptide signals in liquid chromatography-mass spectrometry data for protein phosphorylation analysis. Wu HY; Tseng VS; Liao PC J Proteome Res; 2007 May; 6(5):1812-21. PubMed ID: 17402769 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of the efficiency of phosphoproteomic identification by removing phosphates after phosphopeptide enrichment. Ishihama Y; Wei FY; Aoshima K; Sato T; Kuromitsu J; Oda Y J Proteome Res; 2007 Mar; 6(3):1139-44. PubMed ID: 17330947 [TBL] [Abstract][Full Text] [Related]
15. Quantitative analysis of protein complex constituents and their phosphorylation states on a LTQ-Orbitrap instrument. Przybylski C; Jünger MA; Aubertin J; Radvanyi F; Aebersold R; Pflieger D J Proteome Res; 2010 Oct; 9(10):5118-32. PubMed ID: 20734990 [TBL] [Abstract][Full Text] [Related]
16. Integrating titania enrichment, iTRAQ labeling, and Orbitrap CID-HCD for global identification and quantitative analysis of phosphopeptides. Wu J; Warren P; Shakey Q; Sousa E; Hill A; Ryan TE; He T Proteomics; 2010 Jun; 10(11):2224-34. PubMed ID: 20340162 [TBL] [Abstract][Full Text] [Related]
17. Increased confidence in large-scale phosphoproteomics data by complementary mass spectrometric techniques and matching of phosphopeptide data sets. Alcolea MP; Kleiner O; Cutillas PR J Proteome Res; 2009 Aug; 8(8):3808-15. PubMed ID: 19537829 [TBL] [Abstract][Full Text] [Related]
18. Chemical dephosphorylation for identification of multiply phosphorylated peptides and phosphorylation site determination. Kyono Y; Sugiyama N; Tomita M; Ishihama Y Rapid Commun Mass Spectrom; 2010 Aug; 24(15):2277-82. PubMed ID: 20623713 [TBL] [Abstract][Full Text] [Related]
19. Advances in the analysis of protein phosphorylation. Paradela A; Albar JP J Proteome Res; 2008 May; 7(5):1809-18. PubMed ID: 18327898 [TBL] [Abstract][Full Text] [Related]
20. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]