BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 17372658)

  • 21. Neural mechanisms underlying target selection with saccadic eye movements.
    Schiller PH; Tehovnik EJ
    Prog Brain Res; 2005; 149():157-71. PubMed ID: 16226583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Behavioural state affects saccadic eye movements evoked by microstimulation of striate cortex.
    Tehovnik EJ; Slocum WM; Carvey CE
    Eur J Neurosci; 2003 Aug; 18(4):969-79. PubMed ID: 12925023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microstimulation of visual cortex to restore vision.
    Tehovnik EJ; Slocum WM; Smirnakis SM; Tolias AS
    Prog Brain Res; 2009; 175():347-75. PubMed ID: 19660667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Background changes delay information represented in macaque V1 neurons.
    Huang X; Paradiso MA
    J Neurophysiol; 2005 Dec; 94(6):4314-30. PubMed ID: 16107522
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anti-pointing is mediated by a perceptual bias of target location in left and right visual space.
    Heath M; Maraj A; Gradkowski A; Binsted G
    Exp Brain Res; 2009 Jan; 192(2):275-86. PubMed ID: 18982320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal properties of spatial frequency tuning of surround suppression in the primary visual cortex and the lateral geniculate nucleus of the cat.
    Ishikawa A; Shimegi S; Kida H; Sato H
    Eur J Neurosci; 2010 Jun; 31(11):2086-100. PubMed ID: 20604803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporal properties of inputs to direction-selective neurons in monkey V1.
    Saul AB; Carras PL; Humphrey AL
    J Neurophysiol; 2005 Jul; 94(1):282-94. PubMed ID: 15744011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for subcortical involvement in the visual control of human reaching.
    Day BL; Brown P
    Brain; 2001 Sep; 124(Pt 9):1832-40. PubMed ID: 11522585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visual spatial summation in macaque geniculocortical afferents.
    Sceniak MP; Chatterjee S; Callaway EM
    J Neurophysiol; 2006 Dec; 96(6):3474-84. PubMed ID: 16928793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons.
    Angelucci A; Bressloff PC
    Prog Brain Res; 2006; 154():93-120. PubMed ID: 17010705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual response properties of neurons in cortical areas MT and MST projecting to the dorsolateral pontine nucleus or the nucleus of the optic tract in macaque monkeys.
    Hoffmann KP; Bremmer F; Distler C
    Eur J Neurosci; 2009 Jan; 29(2):411-23. PubMed ID: 19200243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visual Receptive Field Properties of Neurons in the Mouse Lateral Geniculate Nucleus.
    Tang J; Ardila Jimenez SC; Chakraborty S; Schultz SR
    PLoS One; 2016; 11(1):e0146017. PubMed ID: 26741374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic circuitry for updating spatial representations. II. Physiological evidence for interhemispheric transfer in area LIP of the split-brain macaque.
    Heiser LM; Berman RA; Saunders RC; Colby CL
    J Neurophysiol; 2005 Nov; 94(5):3249-58. PubMed ID: 15888533
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fast and slow parietal pathways mediate spatial attention.
    Chambers CD; Payne JM; Stokes MG; Mattingley JB
    Nat Neurosci; 2004 Mar; 7(3):217-8. PubMed ID: 14983182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-Targeted Optogenetics and Electrical Microstimulation Reveal the Primate Koniocellular Projection to Supra-granular Visual Cortex.
    Klein C; Evrard HC; Shapcott KA; Haverkamp S; Logothetis NK; Schmid MC
    Neuron; 2016 Apr; 90(1):143-51. PubMed ID: 27021172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macaque V1 representations in natural and reduced visual contexts: spatial and temporal properties and influence of saccadic eye movements.
    Ruiz O; Paradiso MA
    J Neurophysiol; 2012 Jul; 108(1):324-33. PubMed ID: 22457470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visuomotor coordination and motor representation by human temporal lobe neurons.
    Tankus A; Fried I
    J Cogn Neurosci; 2012 Mar; 24(3):600-10. PubMed ID: 22066588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Opposite visual field asymmetries for egocentric and allocentric spatial judgments.
    Sdoia S; Couyoumdjian A; Ferlazzo F
    Neuroreport; 2004 Jun; 15(8):1303-5. PubMed ID: 15167554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for both reaching and grasping activity in the medial parieto-occipital cortex of the macaque.
    Fattori P; Breveglieri R; Amoroso K; Galletti C
    Eur J Neurosci; 2004 Nov; 20(9):2457-66. PubMed ID: 15525286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Action-induced blindness with lateralized stimuli and responses.
    Müsseler J; Wühr P; Danielmeier C; Zysset S
    Exp Brain Res; 2005 Jan; 160(2):214-22. PubMed ID: 15289962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.