These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
413 related articles for article (PubMed ID: 17372705)
1. Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals. Palmroth MR; Koskinen PE; Kaksonen AH; Münster U; Pichtel J; Puhakka JA Biodegradation; 2007 Dec; 18(6):769-82. PubMed ID: 17372705 [TBL] [Abstract][Full Text] [Related]
2. Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. Vivas A; Moreno B; del Val C; Macci C; Masciandaro G; Benitez E J Environ Monit; 2008 Nov; 10(11):1287-96. PubMed ID: 18974897 [TBL] [Abstract][Full Text] [Related]
3. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Alisi C; Musella R; Tasso F; Ubaldi C; Manzo S; Cremisini C; Sprocati AR Sci Total Environ; 2009 Apr; 407(8):3024-32. PubMed ID: 19201450 [TBL] [Abstract][Full Text] [Related]
4. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar. Frey B; Pesaro M; Rüdt A; Widmer F Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346 [TBL] [Abstract][Full Text] [Related]
5. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. Gremion F; Chatzinotas A; Kaufmann K; Von Sigler W; Harms H FEMS Microbiol Ecol; 2004 May; 48(2):273-83. PubMed ID: 19712410 [TBL] [Abstract][Full Text] [Related]
6. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Kirk JL; Klironomos JN; Lee H; Trevors JT Environ Pollut; 2005 Feb; 133(3):455-65. PubMed ID: 15519721 [TBL] [Abstract][Full Text] [Related]
7. Microbial community response to a release of neat ethanol onto residual hydrocarbons in a pilot-scale aquifer tank. Cápiro NL; Da Silva ML; Stafford BP; Rixey WG; Alvarez PJ Environ Microbiol; 2008 Sep; 10(9):2236-44. PubMed ID: 18484998 [TBL] [Abstract][Full Text] [Related]
8. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers. Tuomi PM; Salminen JM; Jørgensen KS FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859 [TBL] [Abstract][Full Text] [Related]
9. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Andria V; Reichenauer TG; Sessitsch A Environ Pollut; 2009 Dec; 157(12):3347-50. PubMed ID: 19773105 [TBL] [Abstract][Full Text] [Related]
10. Soil Characteristics Constrain the Response of Microbial Communities and Associated Hydrocarbon Degradation Genes during Phytoremediation. Correa-García S; Rheault K; Tremblay J; Séguin A; Yergeau E Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33097512 [TBL] [Abstract][Full Text] [Related]
11. Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Escalante-Espinosa E; Gallegos-Martínez ME; Favela-Torres E; Gutiérrez-Rojas M Chemosphere; 2005 Apr; 59(3):405-13. PubMed ID: 15763093 [TBL] [Abstract][Full Text] [Related]
12. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Rajkumar M; Vara Prasad MN; Freitas H; Ae N Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893 [TBL] [Abstract][Full Text] [Related]
13. Biostimulation of micro-organisms from sugarcane bagasse pith for the removal of weathered hydrocarbon from soil. Pèrez-Armendáriz B; Loera-Corral O; Fernández-Linares L; Esparza-García F; Rodríguez-Vázquez R Lett Appl Microbiol; 2004; 38(5):373-7. PubMed ID: 15059206 [TBL] [Abstract][Full Text] [Related]
14. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study. Trindade PV; Sobral LG; Rizzo AC; Leite SG; Soriano AU Chemosphere; 2005 Jan; 58(4):515-22. PubMed ID: 15620743 [TBL] [Abstract][Full Text] [Related]
15. Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the Maritime Antarctic. Flocco CG; Gomes NC; Mac Cormack W; Smalla K Environ Microbiol; 2009 Mar; 11(3):700-14. PubMed ID: 19278452 [TBL] [Abstract][Full Text] [Related]
16. The co-application of earthworms (Dendrobaena veneta) and compost to increase hydrocarbon losses from diesel contaminated soils. Hickman ZA; Reid BJ Environ Int; 2008 Oct; 34(7):1016-22. PubMed ID: 18456332 [TBL] [Abstract][Full Text] [Related]
17. Rhizosphere microbial activity during phytoremediation of diesel-contaminated soil. Kim J; Kang SH; Min KA; Cho KS; Lee IS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(11):2503-16. PubMed ID: 17000542 [TBL] [Abstract][Full Text] [Related]
18. Effect of nickel on the mineralization of hydrocarbons by indigenous microbiota in Kuwait soils. Al-Saleh ES; Obuekwe C J Basic Microbiol; 2009 Jun; 49(3):256-63. PubMed ID: 19219899 [TBL] [Abstract][Full Text] [Related]
19. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes. Pérez-de-Mora A; Engel M; Schloter M Microb Ecol; 2011 Nov; 62(4):959-72. PubMed ID: 21567188 [TBL] [Abstract][Full Text] [Related]
20. Functional gene abundances (nahAc, alkB, xylE) in the assessment of the efficacy of bioremediation. Salminen JM; Tuomi PM; Jørgensen KS Appl Biochem Biotechnol; 2008 Dec; 151(2-3):638-52. PubMed ID: 18592409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]