These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 17372782)

  • 1. A more realistic approach to pest-management problem.
    Bhattacharyya S; Bhattacharya DK
    Bull Math Biol; 2007 May; 69(4):1277-310. PubMed ID: 17372782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved integrated pest management model under 2-control parameters (sterile male and pesticide).
    Bhattacharyya S; Bhattacharya DK
    Math Biosci; 2007 Sep; 209(1):256-81. PubMed ID: 17306306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pest management of a prey-predator model with sexual favoritism.
    Pei Y; Yang Y; Li C; Chen L
    Math Med Biol; 2009 Jun; 26(2):97-115. PubMed ID: 19015368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the impulsive controllability and bifurcation of a predator-pest model of IPM.
    Zhang H; Georgescu P; Chen L
    Biosystems; 2008 Sep; 93(3):151-71. PubMed ID: 18467020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myths, models and mitigation of resistance to pesticides.
    Hoy MA
    Philos Trans R Soc Lond B Biol Sci; 1998 Oct; 353(1376):1787-95. PubMed ID: 10021775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of pest and its predator model with disease in the pest and optimal use of pesticide.
    Kar TK; Ghorai A; Jana S
    J Theor Biol; 2012 Oct; 310():187-98. PubMed ID: 22771900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated pest management models and their dynamical behaviour.
    Tang S; Xiao Y; Chen L; Cheke RA
    Bull Math Biol; 2005 Jan; 67(1):115-35. PubMed ID: 15691542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The prey-dependent consumption two-prey one-predator models with stage structure for the predator and impulsive effects.
    Song X; Xiang Z
    J Theor Biol; 2006 Oct; 242(3):683-98. PubMed ID: 16797031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of predator and prey dispersal on success or failure of biological control.
    Tang S; Cheke RA; Xiao Y
    Bull Math Biol; 2009 Nov; 71(8):2025-47. PubMed ID: 19562416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological control through provision of additional food to predators: a theoretical study.
    Srinivasu PD; Prasad BS; Venkatesulu M
    Theor Popul Biol; 2007 Aug; 72(1):111-20. PubMed ID: 17507068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extinction and permanence of one-prey multi-predators of Holling type II function response system with impulsive biological control.
    Pei Y; Chen L; Zhang Q; Li C
    J Theor Biol; 2005 Aug; 235(4):495-503. PubMed ID: 15935168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An impulsively controlled pest management model with n predator species and a common prey.
    Georgescu P; Zhang H
    Biosystems; 2012 Dec; 110(3):162-70. PubMed ID: 23123675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimum timing for integrated pest management: modelling rates of pesticide application and natural enemy releases.
    Tang S; Tang G; Cheke RA
    J Theor Biol; 2010 May; 264(2):623-38. PubMed ID: 20219475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitable population dynamics, biological control failure, and spatiotemporal pattern formation in a model ecosystem.
    Morozov A; Petrovskii S
    Bull Math Biol; 2009 May; 71(4):863-87. PubMed ID: 19107539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of intrapredatory interferences on impulsive biological control efficiency.
    Nundloll S; Mailleret L; Grognard F
    Bull Math Biol; 2010 Nov; 72(8):2113-38. PubMed ID: 20333476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global stability and optimisation of a general impulsive biological control model.
    Mailleret L; Grognard F
    Math Biosci; 2009 Oct; 221(2):91-100. PubMed ID: 19615384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous traveling waves for prey-taxis.
    Lee JM; Hillen T; Lewis MA
    Bull Math Biol; 2008 Apr; 70(3):654-76. PubMed ID: 18253803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of an integrated feedback control for a pest management predator-prey model.
    Shi ZZ; Cheng HD; Liu Y; Wang YH
    Math Biosci Eng; 2019 Sep; 16(6):7963-7981. PubMed ID: 31698650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Costs and effectiveness of on-farm measures to reduce aquatic risks from pesticides in the Netherlands.
    van Eerdt MM; Spruijt J; van der Wal E; van Zeijts H; Tiktak A
    Pest Manag Sci; 2014 Dec; 70(12):1840-9. PubMed ID: 24446430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive release of natural enemies in a pest-natural enemy system with pesticide resistance.
    Liang J; Tang S; Cheke RA; Wu J
    Bull Math Biol; 2013 Nov; 75(11):2167-95. PubMed ID: 23943345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.