These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 17372836)

  • 1. Detection of nonlinearity in cardiovascular variability signals using cyclostationary analysis.
    Seydnejad S
    Ann Biomed Eng; 2007 May; 35(5):744-54. PubMed ID: 17372836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomic cardiac control in animal models of cardiovascular diseases. I. Methods of variability analysis.
    Wessel N; Bauernschmitt R; Wernicke D; Kurths J; Malberg H
    Biomed Tech (Berl); 2007 Feb; 52(1):43-9. PubMed ID: 17313333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of nonlinear methods symbolic dynamics, detrended fluctuation, and Poincare plot analysis in risk stratification in patients with dilated cardiomyopathy.
    Voss A; Schroeder R; Truebner S; Goernig M; Figulla HR; Schirdewan A
    Chaos; 2007 Mar; 17(1):015120. PubMed ID: 17411277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing generalized and phase synchronization in cardiovascular and cardiorespiratory signals.
    Pereda E; De la Cruz DM; De Vera L; González JJ
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):578-83. PubMed ID: 15825859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multivariate and multidimensional analysis of cardiovascular oscillations in patients with heart failure.
    Voss A; Schroeder R; Truebner S; Baumert M; Goernig M; Hagenow A; Figulla HR
    Biomed Tech (Berl); 2006 Oct; 51(4):163-6. PubMed ID: 17061930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization of low-frequency oscillations in the human cardiovascular system.
    Karavaev AS; Prokhorov MD; Ponomarenko VI; Kiselev AR; Gridnev VI; Ruban EI; Bezruchko BP
    Chaos; 2009 Sep; 19(3):033112. PubMed ID: 19791992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of three methods for beat-to-beat-interval extraction from continuous blood pressure and electrocardiogram with respect to heart rate variability analysis.
    Suhrbier A; Heringer R; Walther T; Malberg H; Wessel N
    Biomed Tech (Berl); 2006 Jul; 51(2):70-6. PubMed ID: 16915768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new heart rate variability analysis method by means of quantifying the variation of nonlinear dynamic patterns.
    Ding H; Crozier S; Wilson S
    IEEE Trans Biomed Eng; 2007 Sep; 54(9):1590-7. PubMed ID: 17867351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sometimes higher heart rate variability is not better heart rate variability: results of graphical and nonlinear analyses.
    Stein PK; Domitrovich PP; Hui N; Rautaharju P; Gottdiener J
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):954-9. PubMed ID: 16174015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction.
    Porta A; Guzzetti S; Furlan R; Gnecchi-Ruscone T; Montano N; Malliani A
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):94-106. PubMed ID: 17260860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthonormal-basis partitioning and time-frequency representation of cardiac rhythm dynamics.
    Aysin B; Chaparro LF; Gravé I; Shusterman V
    IEEE Trans Biomed Eng; 2005 May; 52(5):878-89. PubMed ID: 15887537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of HRV spectrogram using multiple window methods focussing on the high frequency power.
    Hansson M; Jönsson P
    Med Eng Phys; 2006 Oct; 28(8):749-61. PubMed ID: 16443384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sampling frequency of the RR interval time series for spectral analysis of heart rate variability.
    Singh D; Vinod K; Saxena SC
    J Med Eng Technol; 2004; 28(6):263-72. PubMed ID: 15513744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral evaluation of aging effects on blood pressure and heart rate variations in healthy subjects.
    Singh D; Vinod K; Saxena SC; Deepak KK
    J Med Eng Technol; 2006; 30(3):145-50. PubMed ID: 16772217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proposed corrections for the quantification of coupling patterns by recurrence plots.
    Censi F; Calcagnini G; Cerutti S
    IEEE Trans Biomed Eng; 2004 May; 51(5):856-9. PubMed ID: 15132513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac state diagnosis using higher order spectra of heart rate variability.
    Chua KC; Chandran V; Acharya UR; Lim CM
    J Med Eng Technol; 2008; 32(2):145-55. PubMed ID: 18297505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Causal cross-spectral analysis of heart rate and blood pressure variability for describing the impairment of the cardiovascular control in neurally mediated syncope.
    Faes L; Widesott L; Del Greco M; Antolini R; Nollo G
    IEEE Trans Biomed Eng; 2006 Jan; 53(1):65-73. PubMed ID: 16402604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the nonlinear content of the heart rate dynamics during myocardial ischemia.
    Benitez R; Alvarez-Lacalle E; Echebarria B; Gomis P; Vallverdu M; Caminal P
    Med Eng Phys; 2009 Jul; 31(6):660-7. PubMed ID: 19208494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QT variability and HRV interactions in ECG: quantification and reliability.
    Almeida R; Gouveia S; Rocha AP; Pueyo E; Martínez JP; Laguna P
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1317-29. PubMed ID: 16830936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kullback-Leibler clustering of continuous wavelet transform measures of heart rate variability.
    Mager DE; Merritt MM; Kasturi J; Witkin LR; Urdiqui-Macdonald M; Sollers JJ; Evans MK; Zonderman AB; Abernethy DR; Thayer JF
    Biomed Sci Instrum; 2004; 40():337-42. PubMed ID: 15133981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.