These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17373024)

  • 1. In situ formation of protein-polymer conjugates through reversible addition fragmentation chain transfer polymerization.
    Liu J; Bulmus V; Herlambang DL; Barner-Kowollik C; Stenzel MH; Davis TP
    Angew Chem Int Ed Engl; 2007; 46(17):3099-103. PubMed ID: 17373024
    [No Abstract]   [Full Text] [Related]  

  • 2. Well-defined protein-polymer conjugates via in situ RAFT polymerization.
    Boyer C; Bulmus V; Liu J; Davis TP; Stenzel MH; Barner-Kowollik C
    J Am Chem Soc; 2007 Jun; 129(22):7145-54. PubMed ID: 17500523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein adsorption on polymer-modified silica particle surface.
    Tsukagoshi T; Kondo Y; Yoshino N
    Colloids Surf B Biointerfaces; 2007 Jan; 54(1):101-7. PubMed ID: 17118630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine-reactive polymers synthesized by atom transfer radical polymerization for conjugation to proteins.
    Bontempo D; Heredia KL; Fish BA; Maynard HD
    J Am Chem Soc; 2004 Dec; 126(47):15372-3. PubMed ID: 15563151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled monothiol-terminated hyperbranched polyglycerols on a gold surface: a comparative study on the structure, morphology, and protein adsorption characteristics with linear poly(ethylene glycol)s.
    J Yeh PY; Kainthan RK; Zou Y; Chiao M; Kizhakkedathu JN
    Langmuir; 2008 May; 24(9):4907-16. PubMed ID: 18361531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Squaric acid mediated synthesis and biological activity of a library of linear and hyperbranched poly(glycerol)-protein conjugates.
    Wurm F; Dingels C; Frey H; Klok HA
    Biomacromolecules; 2012 Apr; 13(4):1161-71. PubMed ID: 22376203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of mineral affinity of bisphosphonate-protein conjugates constructed with disulfide and thioether linkages.
    Wright JE; Gittens SA; Bansal G; Kitov PI; Sindrey D; Kucharski C; Uludağ H
    Biomaterials; 2006 Feb; 27(5):769-84. PubMed ID: 16055182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoresponsive block copolymer-protein conjugates prepared by grafting-from via RAFT polymerization.
    Li M; Li H; De P; Sumerlin BS
    Macromol Rapid Commun; 2011 Feb; 32(4):354-9. PubMed ID: 21433183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precisely defined protein-polymer conjugates: construction of synthetic DNA binding domains on proteins by using multivalent dendrons.
    Kostiainen MA; Szilvay GR; Lehtinen J; Smith DK; Linder MB; Urtti A; Ikkala O
    ACS Nano; 2007 Sep; 1(2):103-13. PubMed ID: 19206526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous purification and polymerization method for bovine serum albumin preparation.
    Yari F; Mousavi Hosseini K
    Ital J Biochem; 2007 Jun; 56(2):163-5. PubMed ID: 17722658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational recovery and preservation of protein nature from heat-induced denaturation by water-soluble phospholipid polymer conjugation.
    Seo JH; Matsuno R; Lee Y; Takai M; Ishihara K
    Biomaterials; 2009 Oct; 30(28):4859-67. PubMed ID: 19545892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Branched polymer-protein conjugates made from mid-chain-functional P(HPMA).
    Tao L; Liu J; Davis TP
    Biomacromolecules; 2009 Oct; 10(10):2847-51. PubMed ID: 19731904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ preparation of protein-"smart" polymer conjugates with retention of bioactivity.
    Heredia KL; Bontempo D; Ly T; Byers JT; Halstenberg S; Maynard HD
    J Am Chem Soc; 2005 Dec; 127(48):16955-60. PubMed ID: 16316241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of amide I signals of interfacial proteins in situ using SFG.
    Wang J; Even MA; Chen X; Schmaier AH; Waite JH; Chen Z
    J Am Chem Soc; 2003 Aug; 125(33):9914-5. PubMed ID: 12914441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible addition-fragmentation chain transfer polymerization of N-isopropylacrylamide: a comparison between a conventional and a fast initiator.
    Bouchékif H; Narain R
    J Phys Chem B; 2007 Sep; 111(38):11120-6. PubMed ID: 17803302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-fast microwave enhanced reversible addition-fragmentation chain transfer (RAFT) polymerization: monomers to polymers in minutes.
    Brown SL; Rayner CM; Graham S; Cooper A; Rannard S; Perrier S
    Chem Commun (Camb); 2007 Jun; (21):2145-7. PubMed ID: 17520117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of versatile thiol-reactive polymer scaffolds via RAFT polymerization.
    Wong L; Boyer C; Jia Z; Zareie HM; Davis TP; Bulmus V
    Biomacromolecules; 2008 Jul; 9(7):1934-44. PubMed ID: 18564875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ ATRP-mediated hierarchical formation of giant amphiphile bionanoreactors.
    Le Droumaguet B; Velonia K
    Angew Chem Int Ed Engl; 2008; 47(33):6263-6. PubMed ID: 18618559
    [No Abstract]   [Full Text] [Related]  

  • 19. Well-defined polymers with activated ester and protected aldehyde side chains for bio-functionalization.
    Hwang J; Li RC; Maynard HD
    J Control Release; 2007 Oct; 122(3):279-86. PubMed ID: 17599628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copolymers including L-histidine and hydrophobic moiety for preparation of nonbiofouling surface.
    Ishii T; Wada A; Tsuzuki S; Casolaro M; Ito Y
    Biomacromolecules; 2007 Nov; 8(11):3340-4. PubMed ID: 17915936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.