These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 17373647)
1. Application of cellulose-based self-assembled tri-enzyme system in a pseudo-reagent-less biosensor for biogenic catecholamine detection. Rabinovich ML; Vasil'chenko LG; Karapetyan KN; Shumakovich GP; Yershevich OP; Ludwig R; Haltrich D; Hadar Y; Kozlov YP; Yaropolov AI Biotechnol J; 2007 May; 2(5):546-58. PubMed ID: 17373647 [TBL] [Abstract][Full Text] [Related]
2. Quaternary ammonium functionalized clay film electrodes modified with polyphenol oxidase for the sensitive detection of catechol. Mbouguen JK; Ngameni E; Walcarius A Biosens Bioelectron; 2007 Sep; 23(2):269-75. PubMed ID: 17537626 [TBL] [Abstract][Full Text] [Related]
3. A high sensitivity amperometric biosensor using a monomolecular layer of laccase as biorecognition element. Vianello F; Cambria A; Ragusa S; Cambria MT; Zennaro L; Rigo A Biosens Bioelectron; 2004 Sep; 20(2):315-21. PubMed ID: 15308236 [TBL] [Abstract][Full Text] [Related]
4. A tris(2,2'-bipyridyl)cobalt(III)-bovine serum albumin composite membrane for biosensors. Zhuo Y; Yuan R; Chai Y; Sun A; Zhang Y; Yang J Biomaterials; 2006 Nov; 27(31):5420-9. PubMed ID: 16843525 [TBL] [Abstract][Full Text] [Related]
5. A non-oxidative electrochemical approach to online measurements of dopamine release through laccase-catalyzed oxidation and intramolecular cyclization of dopamine. Lin Y; Zhang Z; Zhao L; Wang X; Yu P; Su L; Mao L Biosens Bioelectron; 2010 Feb; 25(6):1350-5. PubMed ID: 19926273 [TBL] [Abstract][Full Text] [Related]
6. Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. Liu Y; Qu X; Guo H; Chen H; Liu B; Dong S Biosens Bioelectron; 2006 Jun; 21(12):2195-201. PubMed ID: 16384697 [TBL] [Abstract][Full Text] [Related]
7. Biosensor based on cellobiose dehydrogenase for detection of catecholamines. Stoica L; Lindgren-Sjölander A; Ruzgas T; Gorton L Anal Chem; 2004 Aug; 76(16):4690-6. PubMed ID: 15307778 [TBL] [Abstract][Full Text] [Related]
8. Construction, assembling and application of a trehalase-GOD enzyme electrode system. Antonelli ML; Arduini F; Laganà A; Moscone D; Siliprandi V Biosens Bioelectron; 2009 Jan; 24(5):1382-8. PubMed ID: 18815024 [TBL] [Abstract][Full Text] [Related]
9. Catechol biosensing using a nanostructured layer-by-layer film containing Cl-catechol 1,2-dioxygenase. Zucolotto V; Pinto AP; Tumolo T; Moraes ML; Baptista MS; Riul A; Araújo AP; Oliveira ON Biosens Bioelectron; 2006 Jan; 21(7):1320-6. PubMed ID: 16054354 [TBL] [Abstract][Full Text] [Related]
10. A novel biosensor for sterigmatocystin constructed by multi-walled carbon nanotubes (MWNT) modified with aflatoxin-detoxifizyme (ADTZ). Yao DS; Cao H; Wen S; Liu DL; Bai Y; Zheng WJ Bioelectrochemistry; 2006 May; 68(2):126-33. PubMed ID: 16122991 [TBL] [Abstract][Full Text] [Related]
11. Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film. Tan Y; Deng W; Ge B; Xie Q; Huang J; Yao S Biosens Bioelectron; 2009 Mar; 24(7):2225-31. PubMed ID: 19153037 [TBL] [Abstract][Full Text] [Related]
12. Electropolymerization of preoxidized catecholamines on Prussian blue matrix to immobilize glucose oxidase for sensitive amperometric biosensing. Chen C; Fu Y; Xiang C; Xie Q; Zhang Q; Su Y; Wang L; Yao S Biosens Bioelectron; 2009 Apr; 24(8):2726-9. PubMed ID: 19167205 [TBL] [Abstract][Full Text] [Related]
13. An amperometric enzyme biosensor for real-time measurements of cellobiohydrolase activity on insoluble cellulose. Cruys-Bagger N; Ren G; Tatsumi H; Baumann MJ; Spodsberg N; Andersen HD; Gorton L; Borch K; Westh P Biotechnol Bioeng; 2012 Dec; 109(12):3199-204. PubMed ID: 22767376 [TBL] [Abstract][Full Text] [Related]
14. Development of an oral biosensor for salivary amylase using a monodispersed silver for signal amplification. Aluoch AO; Sadik OA; Bedi G Anal Biochem; 2005 May; 340(1):136-44. PubMed ID: 15802139 [TBL] [Abstract][Full Text] [Related]
15. Development of cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on oxygen electrode for the determination of total cholesterol in food samples. Basu AK; Chattopadhyay P; Roychoudhuri U; Chakraborty R Bioelectrochemistry; 2007 May; 70(2):375-9. PubMed ID: 16814618 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode. Shi L; Liu X; Niu W; Li H; Han S; Chen J; Xu G Biosens Bioelectron; 2009 Jan; 24(5):1159-63. PubMed ID: 18703329 [TBL] [Abstract][Full Text] [Related]
17. Dehydrogenase based reagentless biosensor for monitoring phenylketonuria. Weiss DJ; Dorris M; Loh A; Peterson L Biosens Bioelectron; 2007 May; 22(11):2436-41. PubMed ID: 17029777 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of a trienzymatic system in a sol-gel matrix: a new fluorescent biosensor for xanthine. Salinas-Castillo A; Pastor I; Mallavia R; Mateo CR Biosens Bioelectron; 2008 Dec; 24(4):1059-62. PubMed ID: 18789677 [TBL] [Abstract][Full Text] [Related]
19. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Kafi AK; Wu G; Chen A Biosens Bioelectron; 2008 Dec; 24(4):566-71. PubMed ID: 18640021 [TBL] [Abstract][Full Text] [Related]
20. Amperometric determination of lactate with novel trienzyme/poly(carbamoyl) sulfonate hydrogel-based sensor. Kwan RC; Hon PY; Mak KK; Renneberg R Biosens Bioelectron; 2004 Jul; 19(12):1745-52. PubMed ID: 15142609 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]