BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17373707)

  • 1. Molecular simulations bring new insights into flavonoid/quercetinase interaction modes.
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Proteins; 2007 Jun; 67(4):961-70. PubMed ID: 17373707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of the substrate cavity dynamics of quercetinase.
    van den Bosch M; Swart M; van Gunsteren WF; Canters GW
    J Mol Biol; 2004 Nov; 344(3):725-38. PubMed ID: 15533441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical investigations of the role played by quercetinase enzymes upon the flavonoids oxygenolysis mechanism.
    Antonczak S; Fiorucci S; Golebiowski J; Cabrol-Bass D
    Phys Chem Chem Phys; 2009 Mar; 11(10):1491-501. PubMed ID: 19240925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular simulations reveal a new entry site in quercetin 2,3-dioxygenase. A pathway for dioxygen?
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Proteins; 2006 Sep; 64(4):845-50. PubMed ID: 16786599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygenolysis of flavonoid compounds: DFT description of the mechanism for quercetin.
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Chemphyschem; 2004 Nov; 5(11):1726-33. PubMed ID: 15580933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans: crystal structure of a peculiar ring-cleaving dioxygenase.
    Matera I; Ferraroni M; Bürger S; Scozzafava A; Stolz A; Briganti F
    J Mol Biol; 2008 Jul; 380(5):856-68. PubMed ID: 18572191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulations enlighten the binding mode of quercetin to lipoxygenase-3.
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Proteins; 2008 Nov; 73(2):290-8. PubMed ID: 18655056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis.
    Ang EL; Obbard JP; Zhao H
    FEBS J; 2007 Feb; 274(4):928-39. PubMed ID: 17269935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic and electronic structure studies of 2,3-dihydroxybiphenyl 1,2-dioxygenase: O2 reactivity of the non-heme ferrous site in extradiol dioxygenases.
    Davis MI; Wasinger EC; Decker A; Pau MY; Vaillancourt FH; Bolin JT; Eltis LD; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2003 Sep; 125(37):11214-27. PubMed ID: 16220940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavonoids as inhibitors of human carbonyl reductase 1.
    Carlquist M; Frejd T; Gorwa-Grauslund MF
    Chem Biol Interact; 2008 Jul; 174(2):98-108. PubMed ID: 18579125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavonoids biotransformation by bacterial non-heme dioxygenases, biphenyl and naphthalene dioxygenase.
    Seo J; Kang SI; Kim M; Han J; Hur HG
    Appl Microbiol Biotechnol; 2011 Jul; 91(2):219-28. PubMed ID: 21626021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural studies on 3-hydroxyanthranilate-3,4-dioxygenase: the catalytic mechanism of a complex oxidation involved in NAD biosynthesis.
    Zhang Y; Colabroy KL; Begley TP; Ealick SE
    Biochemistry; 2005 May; 44(21):7632-43. PubMed ID: 15909978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and molecular characterization of a quercetinase from Penicillium olsonii.
    Tranchimand S; Ertel G; Gaydou V; Gaudin C; Tron T; Iacazio G
    Biochimie; 2008 May; 90(5):781-9. PubMed ID: 18206655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction coordinate analysis for beta-diketone cleavage by the non-heme Fe2+-dependent dioxygenase Dke1.
    Straganz GD; Nidetzky B
    J Am Chem Soc; 2005 Sep; 127(35):12306-14. PubMed ID: 16131208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locally enhanced sampling study of dioxygen diffusion pathways in homoprotocatechuate 2,3-dioxygenase.
    Xu L; Liu X; Zhao W; Wang X
    J Phys Chem B; 2009 Oct; 113(41):13596-603. PubMed ID: 19761222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of the copper-dependent quercetin 2,3-dioxygenase. 2. X-ray absorption studies of native enzyme and anaerobic complexes with the substrates quercetin and myricetin.
    Steiner RA; Meyer-Klaucke W; Dijkstra BW
    Biochemistry; 2002 Jun; 41(25):7963-8. PubMed ID: 12069586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate recognition and catalysis by the cofactor-independent dioxygenase DpgC.
    Fielding EN; Widboom PF; Bruner SD
    Biochemistry; 2007 Dec; 46(49):13994-4000. PubMed ID: 18004875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One metal-two pathways to the carboxylate-enhanced, iron-containing quercetinase mimics.
    Baráth G; Kaizer J; Speier G; Párkányi L; Kuzmann E; Vértes A
    Chem Commun (Camb); 2009 Jun; (24):3630-2. PubMed ID: 19521631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and homology modeling of 2-aminobiphenyl-2,3-diol-1,2-dioxygenase from Pseudomonas stutzeri carbazole degradation pathway.
    Larentis AL; Almeida RV; Rössle SC; Cardoso AM; Almeida WI; Bisch PM; Alves TL; Martins OB
    Cell Biochem Biophys; 2006; 44(3):530-8. PubMed ID: 16679541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and spectroscopic studies on the quercetin 2,3-dioxygenase from Bacillus subtilis.
    Schaab MR; Barney BM; Francisco WA
    Biochemistry; 2006 Jan; 45(3):1009-16. PubMed ID: 16411777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.