BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17373707)

  • 21. Catalytic reaction mechanism of homogentisate dioxygenase: a hybrid DFT study.
    Borowski T; Georgiev V; Siegbahn PE
    J Am Chem Soc; 2005 Dec; 127(49):17303-14. PubMed ID: 16332080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular basis for the substrate selectivity of bicyclic and monocyclic extradiol dioxygenases.
    Vaillancourt FH; Fortin PD; Labbé G; Drouin NM; Karim Z; Agar NY; Eltis LD
    Biochem Biophys Res Commun; 2005 Dec; 338(1):215-22. PubMed ID: 16165093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional interaction of diphenols with polyphenol oxidase. Molecular determinants of substrate/inhibitor specificity.
    Kanade SR; Suhas VL; Chandra N; Gowda LR
    FEBS J; 2007 Aug; 274(16):4177-87. PubMed ID: 17651437
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The crystal structure of the ring-hydroxylating dioxygenase from Sphingomonas CHY-1.
    Jakoncic J; Jouanneau Y; Meyer C; Stojanoff V
    FEBS J; 2007 May; 274(10):2470-81. PubMed ID: 17451434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of grape dihydroflavonol 4-reductase, a key enzyme in flavonoid biosynthesis.
    Petit P; Granier T; d'Estaintot BL; Manigand C; Bathany K; Schmitter JM; Lauvergeat V; Hamdi S; Gallois B
    J Mol Biol; 2007 May; 368(5):1345-57. PubMed ID: 17395203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Manganese and iron flavonolates as flavonol 2,4-dioxygenase mimics.
    Kaizer J; Baráth G; Pap J; Speier G; Giorgi M; Réglier M
    Chem Commun (Camb); 2007 Dec; (48):5235-7. PubMed ID: 18060153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural basis for cofactor-independent dioxygenation in vancomycin biosynthesis.
    Widboom PF; Fielding EN; Liu Y; Bruner SD
    Nature; 2007 May; 447(7142):342-5. PubMed ID: 17507985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specific interactions of quercetin and other flavonoids with target proteins are revealed by elicited fluorescence.
    Gutzeit HO; Henker Y; Kind B; Franz A
    Biochem Biophys Res Commun; 2004 May; 318(2):490-5. PubMed ID: 15120627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochemical characterization and mutational analysis of the mononuclear non-haem Fe2+ site in Dke1, a cupin-type dioxygenase from Acinetobacter johnsonii.
    Leitgeb S; Straganz GD; Nidetzky B
    Biochem J; 2009 Mar; 418(2):403-11. PubMed ID: 18973472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymatic characteristics of quercetinases from some indigenous Aspergillus flavus strains.
    Yadav RS; Yadav KD
    Indian J Biochem Biophys; 2008 Oct; 45(5):345-9. PubMed ID: 19069847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of residue Thr249 in modulating the catalytic efficiency and substrate specificity of catechol-2,3-dioxygenase from Pseudomonas stutzeri OX1.
    Siani L; Viggiani A; Notomista E; Pezzella A; Di Donato A
    FEBS J; 2006 Jul; 273(13):2963-76. PubMed ID: 16734718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulations of matrix metalloproteinase 2: role of the structural metal ions.
    Díaz N; Suarez D
    Biochemistry; 2007 Aug; 46(31):8943-52. PubMed ID: 17616173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atomistic simulation combined with analytic theory to study the response of the P-selectin/PSGL-1 complex to an external force.
    Gunnerson KN; Pereverzev YV; Prezhdo OV
    J Phys Chem B; 2009 Feb; 113(7):2090-100. PubMed ID: 19178163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In silico analyses of substrate interactions with human serum paraoxonase 1.
    Hu X; Jiang X; Lenz DE; Cerasoli DM; Wallqvist A
    Proteins; 2009 May; 75(2):486-98. PubMed ID: 18951406
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EPR characterization of the mononuclear Cu-containing Aspergillus japonicus quercetin 2,3-dioxygenase reveals dramatic changes upon anaerobic binding of substrates.
    Kooter IM; Steiner RA; Dijkstra BW; van Noort PI; Egmond MR; Huber M
    Eur J Biochem; 2002 Jun; 269(12):2971-9. PubMed ID: 12071961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural studies on the Pseudomonas aeruginosa sialidase-like enzyme PA2794 suggest substrate and mechanistic variations.
    Xu G; Ryan C; Kiefel MJ; Wilson JC; Taylor GL
    J Mol Biol; 2009 Feb; 386(3):828-40. PubMed ID: 19166860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing electrostatic interactions and ligand binding in aspartyl-tRNA synthetase through site-directed mutagenesis and computer simulations.
    Thompson D; Lazennec C; Plateau P; Simonson T
    Proteins; 2008 May; 71(3):1450-60. PubMed ID: 18076053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myricitrin as a substrate and inhibitor of myeloperoxidase: implications for the pharmacological effects of flavonoids.
    Meotti FC; Senthilmohan R; Harwood DT; Missau FC; Pizzolatti MG; Kettle AJ
    Free Radic Biol Med; 2008 Jan; 44(1):109-20. PubMed ID: 17963707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structures of Paenibacillus polymyxa beta-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases.
    Isorna P; Polaina J; Latorre-García L; Cañada FJ; González B; Sanz-Aparicio J
    J Mol Biol; 2007 Aug; 371(5):1204-18. PubMed ID: 17585934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme-substrate interaction and characterization of a 2,3-dihydroxybiphenyl 1,2-dioxygenase from Dyella ginsengisoli LA-4.
    Li A; Qu Y; Zhou J; Ma F
    FEMS Microbiol Lett; 2009 Mar; 292(2):231-9. PubMed ID: 19187202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.