BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17374125)

  • 1. Influence of salt marsh on bacterial activity in two estuaries with different hydrodynamic characteristics (Ria de Aveiro and Tagus Estuary).
    Santos L; Cunha A; Silva H; Caçador I; Dias JM; Almeida A
    FEMS Microbiol Ecol; 2007 Jun; 60(3):429-41. PubMed ID: 17374125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of Spartina maritima to the reduction of eutrophication in estuarine systems.
    Sousa AI; Lillebø AI; Caçador I; Pardal MA
    Environ Pollut; 2008 Dec; 156(3):628-35. PubMed ID: 18684544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halophyte vegetation influences in salt marsh retention capacity for heavy metals.
    Reboreda R; Caçador I
    Environ Pollut; 2007 Mar; 146(1):147-54. PubMed ID: 16996176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity and growth efficiency of heterotrophic bacteria in a salt marsh (Ria de Aveiro, Portugal).
    Cunha MA; Pedro R; Almeida MA; Silva MH
    Microbiol Res; 2005; 160(3):279-90. PubMed ID: 16035240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss of Estuarine Bacteria by Viral Infection and Predation in Microcosm Conditions.
    Almeida MA; Cunha MA; Alcântara F
    Microb Ecol; 2001 Dec; 42(4):562-571. PubMed ID: 12024239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments.
    Almeida CM; Mucha AP; Bordalo AA; Vasconcelos MT
    Sci Total Environ; 2008 Sep; 403(1-3):188-95. PubMed ID: 18606437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of methylmercury production in a temperate salt marsh (Ria de Aveiro Lagoon, Portugal).
    Válega M; Lillebø AI; Pereira ME; Corns WT; Stockwell PB; Duarte AC; Pardal MA
    Mar Pollut Bull; 2008 Jan; 56(1):153-8. PubMed ID: 18036621
    [No Abstract]   [Full Text] [Related]  

  • 8. Organic substrate quality as the link between bacterioplankton carbon demand and growth efficiency in a temperate salt-marsh estuary.
    Apple JK; del Giorgio PA
    ISME J; 2007 Dec; 1(8):729-42. PubMed ID: 18059496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt marsh sediment bacteria: their distribution and response to external nutrient inputs.
    Bowen JL; Crump BC; Deegan LA; Hobbie JE
    ISME J; 2009 Aug; 3(8):924-34. PubMed ID: 19421233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the indigenous PAH-degrading bacteria of Spartina dominated salt marshes in the New York/New Jersey Harbor.
    Launen LA; Dutta J; Turpeinen R; Eastep ME; Dorn R; Buggs VH; Leonard JW; Häggblom MM
    Biodegradation; 2008 Jun; 19(3):347-63. PubMed ID: 17636392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of primary producers to mercury trophic transfer in estuarine ecosystems: possible effects of eutrophication.
    Coelho JP; Pereira ME; Duarte AC; Pardal MA
    Mar Pollut Bull; 2009 Aug; 58(3):358-65. PubMed ID: 19062048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors Influencing Bacterial Production in a Shallow Estuarine System.
    Almeida MA; Cunha MA; Alcântara F
    Microb Ecol; 2001 Oct; 42(3):416-426. PubMed ID: 12024266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship of bacterioplankton production with primary production and respiration in a shallow estuarine system (Ria de Aveiro, NW Portugal).
    Almeida MA; Cunha MA; Alcântara F
    Microbiol Res; 2005; 160(3):315-28. PubMed ID: 16035244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term effects of mercury in a salt marsh: hysteresis in the distribution of vegetation following recovery from contamination.
    Válega M; Lillebø AI; Pereira ME; Duarte AC; Pardal MA
    Chemosphere; 2008 Mar; 71(4):765-72. PubMed ID: 18061237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the wildlife habitat value of New England salt marshes: I. Model and application.
    McKinney RA; Charpentier MA; Wigand C
    Environ Monit Assess; 2009 Jul; 154(1-4):29-40. PubMed ID: 18592388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals.
    Reboreda R; Caçador I
    Mar Environ Res; 2008 Feb; 65(1):77-84. PubMed ID: 17935772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular sequence analysis of prokaryotic diversity in the middle and outer sections of the Portuguese estuary Ria de Aveiro.
    Henriques IS; Almeida A; Cunha A; Correia A
    FEMS Microbiol Ecol; 2004 Aug; 49(2):269-79. PubMed ID: 19712420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consumer control of salt marshes driven by human disturbance.
    Bertness MD; Silliman BR
    Conserv Biol; 2008 Jun; 22(3):618-23. PubMed ID: 18577090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing anthropogenic pressures on estuarine fish nurseries along the Portuguese coast: a multi-metric index and conceptual approach.
    Vasconcelos RP; Reis-Santos P; Fonseca V; Maia A; Ruano M; França S; Vinagre C; Costa MJ; Cabral H
    Sci Total Environ; 2007 Mar; 374(2-3):199-215. PubMed ID: 17292947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for preferential depths of metal retention in roots of salt marsh plants.
    Caetano M; Vale C; Cesário R; Fonseca N
    Sci Total Environ; 2008 Feb; 390(2-3):466-74. PubMed ID: 18036637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.