BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 17374130)

  • 1. Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates.
    Gordillo F; Chávez FP; Jerez CA
    FEMS Microbiol Ecol; 2007 May; 60(2):322-8. PubMed ID: 17374130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorobenzoate inhibits growth and induces stress proteins in the PCB-degrading bacterium Burkholderia xenovorans LB400.
    Martínez P; Agulló L; Hernández M; Seeger M
    Arch Microbiol; 2007 Sep; 188(3):289-97. PubMed ID: 17522847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tolerance of Pseudomonas pseudoalcaligenes KF707 to metals, polychlorobiphenyls and chlorobenzoates: effects on chemotaxis-, biofilm- and planktonic-grown cells.
    Tremaroli V; Vacchi Suzzi C; Fedi S; Ceri H; Zannoni D; Turner RJ
    FEMS Microbiol Ecol; 2010 Nov; 74(2):291-301. PubMed ID: 20846140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant compounds improved PCB-degradation by Burkholderia xenovorans strain LB400.
    Ponce BL; Latorre VK; González M; Seeger M
    Enzyme Microb Technol; 2011 Dec; 49(6-7):509-16. PubMed ID: 22142725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmentally relevant parameters affecting PCB degradation: carbon source- and growth phase-mitigated effects of the expression of the biphenyl pathway and associated genes in Burkholderia xenovorans LB400.
    Parnell JJ; Denef VJ; Park J; Tsoi T; Tiedje JM
    Biodegradation; 2010 Feb; 21(1):147-56. PubMed ID: 19672561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biphenyl uptake by psychrotolerant Pseudomonas sp. strain Cam-1 and mesophilic Burkholderia sp. strain LB400.
    Master ER; McKinlay JJ; Stewart GR; Mohn WW
    Can J Microbiol; 2005 May; 51(5):399-404. PubMed ID: 16088335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus sp. KBC101.
    Sakai M; Ezaki S; Suzuki N; Kurane R
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):111-6. PubMed ID: 15678306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineralization of PCBs by the genetically modified strain Cupriavidus necator JMS34 and its application for bioremediation of PCBs in soil.
    Saavedra JM; Acevedo F; González M; Seeger M
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1543-54. PubMed ID: 20414654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coping with polychlorinated biphenyl (PCB) toxicity: Physiological and genome-wide responses of Burkholderia xenovorans LB400 to PCB-mediated stress.
    Parnell JJ; Park J; Denef V; Tsoi T; Hashsham S; Quensen J; Tiedje JM
    Appl Environ Microbiol; 2006 Oct; 72(10):6607-14. PubMed ID: 17021212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of PCB degradation by Burkholderia xenovorans LB400 in biphasic systems by manipulating culture conditions.
    Rehmann L; Daugulis AJ
    Biotechnol Bioeng; 2008 Feb; 99(3):521-8. PubMed ID: 17705226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of chlorinated biphenyls: use of 3,3'- and 3,5-dichlorobiphenyl as sole sources of carbon by natural species of Ralstonia and Pseudomonas.
    Adebusoye SA; Ilori MO; Picardal FW; Amund OO
    Chemosphere; 2008 Jan; 70(4):656-63. PubMed ID: 17706746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of hydroxylated derivatives of 2,5-dichlorobiphenyl and 2,4,6-trichlorobiphenyl by Burkholderia xenovorans LB400.
    Tehrani R; Lyv MM; Van Aken B
    Environ Sci Pollut Res Int; 2014 May; 21(10):6346-53. PubMed ID: 23589238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity of biphenyl degraders in a chlorobenzene polluted aquifer.
    Abraham WR; Wenderoth DF; Glässer W
    Chemosphere; 2005 Jan; 58(4):529-33. PubMed ID: 15620745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From PCBs to highly toxic metabolites by the biphenyl pathway.
    Cámara B; Herrera C; González M; Couve E; Hofer B; Seeger M
    Environ Microbiol; 2004 Aug; 6(8):842-50. PubMed ID: 15250886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation.
    Samanta SK; Bhushan B; Chauhan A; Jain RK
    Biochem Biophys Res Commun; 2000 Mar; 269(1):117-23. PubMed ID: 10694487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive responses and cellular behaviour of biphenyl-degrading bacteria toward polychlorinated biphenyls.
    Chávez FP; Gordillo F; Jerez CA
    Biotechnol Adv; 2006; 24(3):309-20. PubMed ID: 16413162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria.
    Hickey WJ; Searles DB; Focht DD
    Appl Environ Microbiol; 1993 Apr; 59(4):1194-200. PubMed ID: 8476293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and genetic studies on degradation of chlorobenzoates by Pseudomonas.
    Singh H; Kahlon RS
    Acta Microbiol Pol; 1989; 38(3-4):259-69. PubMed ID: 2484743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemotaxis and biodegradation of 3-methyl- 4-nitrophenol by Ralstonia sp. SJ98.
    Bhushan B; Samanta SK; Chauhan A; Chakraborti AK; Jain RK
    Biochem Biophys Res Commun; 2000 Aug; 275(1):129-33. PubMed ID: 10944453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of chlorobenzoates on the utilisation of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacterial strains.
    Stratford J; Wright MA; Reineke W; Mokross H; Havel J; Knowles CJ; Robinson GK
    Arch Microbiol; 1996 Mar; 165(3):213-8. PubMed ID: 8599540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.