These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 17374148)
1. Late-acting dominant lethal genetic systems and mosquito control. Phuc HK; Andreasen MH; Burton RS; Vass C; Epton MJ; Pape G; Fu G; Condon KC; Scaife S; Donnelly CA; Coleman PG; White-Cooper H; Alphey L BMC Biol; 2007 Mar; 5():11. PubMed ID: 17374148 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of sex determination and transmission ratio distortion in Aedes aegypti. Hoang KP; Teo TM; Ho TX; Le VS Parasit Vectors; 2016 Jan; 9():49. PubMed ID: 26818000 [TBL] [Abstract][Full Text] [Related]
3. Flight performance and teneral energy reserves of two genetically-modified and one wild-type strain of the yellow fever mosquito Aedes aegypti. Bargielowski I; Kaufmann C; Alphey L; Reiter P; Koella J Vector Borne Zoonotic Dis; 2012 Dec; 12(12):1053-8. PubMed ID: 22835152 [TBL] [Abstract][Full Text] [Related]
4. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: endemics and emerging outbreaks. Seirin Lee S; Baker RE; Gaffney EA; White SM J Theor Biol; 2013 Aug; 331():78-90. PubMed ID: 23608633 [TBL] [Abstract][Full Text] [Related]
5. A knockout screen of genes expressed specifically in Ae. aegypti pupae reveals a critical role for stretchin in mosquito flight. Chae K; Valentin C; Dawson C; Jakes E; Myles KM; Adelman ZN Insect Biochem Mol Biol; 2021 May; 132():103565. PubMed ID: 33716097 [TBL] [Abstract][Full Text] [Related]
7. Advancing the art of mosquito control: the journey of the sterile insect technique against Aedes aegypti in Cuba. Gato R; Menéndez Z; Rodríguez M; Gutiérrez-Bugallo G; Del Carmen Marquetti M Infect Dis Poverty; 2024 Aug; 13(1):61. PubMed ID: 39198869 [TBL] [Abstract][Full Text] [Related]
8. Combined sterile insect technique and incompatible insect technique: sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Kittayapong P; Kaeothaisong NO; Ninphanomchai S; Limohpasmanee W Parasit Vectors; 2018 Dec; 11(Suppl 2):657. PubMed ID: 30583749 [TBL] [Abstract][Full Text] [Related]
9. Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs. Whyard S; Erdelyan CN; Partridge AL; Singh AD; Beebe NW; Capina R Parasit Vectors; 2015 Feb; 8():96. PubMed ID: 25880645 [TBL] [Abstract][Full Text] [Related]
10. Preparing Irradiated and Marked Male Aedes aegypti Mosquitoes for Release in an Operational Sterile Insect Technique Program. Moreno BJ; Aldridge RL; Britch SC; Bayer BE; Kline J; Hahn DA; Chen C; Linthicum KJ J Vis Exp; 2021 Mar; (169):. PubMed ID: 33779612 [TBL] [Abstract][Full Text] [Related]
11. Genetic control of Aedes aegypti: data-driven modelling to assess the effect of releasing different life stages and the potential for long-term suppression. Winskill P; Harris AF; Morgan SA; Stevenson J; Raduan N; Alphey L; McKemey AR; Donnelly CA Parasit Vectors; 2014 Feb; 7():68. PubMed ID: 24524678 [TBL] [Abstract][Full Text] [Related]
12. Why RIDL is not SIT. Black WC; Alphey L; James AA Trends Parasitol; 2011 Aug; 27(8):362-70. PubMed ID: 21659002 [TBL] [Abstract][Full Text] [Related]
13. A model framework to estimate impact and cost of genetics-based sterile insect methods for dengue vector control. Alphey N; Alphey L; Bonsall MB PLoS One; 2011; 6(10):e25384. PubMed ID: 21998654 [TBL] [Abstract][Full Text] [Related]
14. Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. Kittayapong P; Ninphanomchai S; Limohpasmanee W; Chansang C; Chansang U; Mongkalangoon P PLoS Negl Trop Dis; 2019 Oct; 13(10):e0007771. PubMed ID: 31658265 [TBL] [Abstract][Full Text] [Related]
15. Downregulation of female doublesex expression by oral-mediated RNA interference reduces number and fitness of Anopheles gambiae adult females. Taracena ML; Hunt CM; Benedict MQ; Pennington PM; Dotson EM Parasit Vectors; 2019 Apr; 12(1):170. PubMed ID: 30992032 [TBL] [Abstract][Full Text] [Related]
16. [The use of transgenic mosquitoes for prevention of spread of arboviral diseases.]. Onishchenko GG; Sizikova TE; Lebedev VN; Borisevich SV Vopr Virusol; 2019; 64(3):101-104. PubMed ID: 31622055 [TBL] [Abstract][Full Text] [Related]
17. Mass production of genetically modified Aedes aegypti for field releases in Brazil. Carvalho DO; Nimmo D; Naish N; McKemey AR; Gray P; Wilke AB; Marrelli MT; Virginio JF; Alphey L; Capurro ML J Vis Exp; 2014 Jan; (83):e3579. PubMed ID: 24430003 [TBL] [Abstract][Full Text] [Related]
18. Female-specific flightless phenotype for mosquito control. Fu G; Lees RS; Nimmo D; Aw D; Jin L; Gray P; Berendonk TU; White-Cooper H; Scaife S; Kim Phuc H; Marinotti O; Jasinskiene N; James AA; Alphey L Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4550-4. PubMed ID: 20176967 [TBL] [Abstract][Full Text] [Related]
19. Genetically Modified Aedes aegypti to Control Dengue: A Review. Qsim M; Ashfaq UA; Yousaf MZ; Masoud MS; Rasul I; Noor N; Hussain A Crit Rev Eukaryot Gene Expr; 2017; 27(4):331-340. PubMed ID: 29283327 [TBL] [Abstract][Full Text] [Related]
20. A sterile insect technique pilot trial on Captiva Island: defining mosquito population parameters for sterile male releases using mark-release-recapture. Carvalho DO; Morreale R; Stenhouse S; Hahn DA; Gomez M; Lloyd A; Hoel D Parasit Vectors; 2022 Nov; 15(1):402. PubMed ID: 36320036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]