BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 17374383)

  • 1. An evolutionary hybrid cellular automaton model of solid tumour growth.
    Gerlee P; Anderson AR
    J Theor Biol; 2007 Jun; 246(4):583-603. PubMed ID: 17374383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolytic phenotype.
    Gerlee P; Anderson AR
    J Theor Biol; 2008 Feb; 250(4):705-22. PubMed ID: 18068192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling evolutionary cell behaviour using neural networks: application to tumour growth.
    Gerlee P; Anderson AR
    Biosystems; 2009 Feb; 95(2):166-74. PubMed ID: 19026711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: biological insights from a hybrid multiscale cellular automaton model.
    Powathil GG; Gordon KE; Hill LA; Chaplain MA
    J Theor Biol; 2012 Sep; 308():1-19. PubMed ID: 22659352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of cell motility in an individual-based model of tumour growth.
    Gerlee P; Anderson AR
    J Theor Biol; 2009 Jul; 259(1):67-83. PubMed ID: 19285513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion-limited tumour growth: simulations and analysis.
    Gerlee P; Anderson AR
    Math Biosci Eng; 2010 Apr; 7(2):385-400. PubMed ID: 20462295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cellular automaton model for tumour growth in inhomogeneous environment.
    Alarcón T; Byrne HM; Maini PK
    J Theor Biol; 2003 Nov; 225(2):257-74. PubMed ID: 14575659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Avascular tumour growth dynamics and the constraints of protein binding for drug transportation.
    Kazmi N; Hossain MA; Phillips RM; Al-Mamun MA; Bass R
    J Theor Biol; 2012 Nov; 313():142-52. PubMed ID: 22974970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially constrained tumour growth affects the patterns of clonal selection and neutral drift in cancer genomic data.
    Chkhaidze K; Heide T; Werner B; Williams MJ; Huang W; Caravagna G; Graham TA; Sottoriva A
    PLoS Comput Biol; 2019 Jul; 15(7):e1007243. PubMed ID: 31356595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular automata coupled with steady-state nutrient solution permit simulation of large-scale growth of tumours.
    Shrestha SM; Joldes GR; Wittek A; Miller K
    Int J Numer Method Biomed Eng; 2013 Apr; 29(4):542-59. PubMed ID: 23382053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolving homeostatic tissue using genetic algorithms.
    Gerlee P; Basanta D; Anderson AR
    Prog Biophys Mol Biol; 2011 Aug; 106(2):414-25. PubMed ID: 21419156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of behaviour transitions in tumour growth using a cellular automaton simulation.
    Santos J; Monteagudo Á
    IET Syst Biol; 2015 Jun; 9(3):75-87. PubMed ID: 26021328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution and phenotypic selection of cancer stem cells.
    Poleszczuk J; Hahnfeldt P; Enderling H
    PLoS Comput Biol; 2015 Mar; 11(3):e1004025. PubMed ID: 25742563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the selective advantage of mutant p53 tumour cells to repeated rounds of hypoxia.
    Gammack D; Byrne HM; Lewis CE
    Bull Math Biol; 2001 Jan; 63(1):135-66. PubMed ID: 11146880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capturing the Dynamics of a Hybrid Multiscale Cancer Model with a Continuum Model.
    Joshi TV; Avitabile D; Owen MR
    Bull Math Biol; 2018 Jun; 80(6):1435-1475. PubMed ID: 29549576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridging scales in cancer progression: mapping genotype to phenotype using neural networks.
    Gerlee P; Kim E; Anderson AR
    Semin Cancer Biol; 2015 Feb; 30():30-41. PubMed ID: 24830623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-replicating artificial neural networks give rise to universal evolutionary dynamics.
    Shvartzman B; Ram Y
    PLoS Comput Biol; 2024 Mar; 20(3):e1012004. PubMed ID: 38547320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational analysis of the influence of the microenvironment on carcinogenesis.
    Basanta D; Ribba B; Watkin E; You B; Deutsch A
    Math Biosci; 2011 Jan; 229(1):22-9. PubMed ID: 21044636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evolutionary model of carcinogenesis.
    Gatenby RA; Vincent TL
    Cancer Res; 2003 Oct; 63(19):6212-20. PubMed ID: 14559806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid computational model for the effects of maspin on cancer cell dynamics.
    Al-Mamun MA; Brown LJ; Hossain MA; Fall C; Wagstaff L; Bass R
    J Theor Biol; 2013 Nov; 337():150-60. PubMed ID: 23988797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.