These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 17374383)

  • 21. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity.
    Waclaw B; Bozic I; Pittman ME; Hruban RH; Vogelstein B; Nowak MA
    Nature; 2015 Sep; 525(7568):261-4. PubMed ID: 26308893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multi-scale agent-based model for avascular tumour growth.
    Sadhukhan S; Mishra PK; Basu SK; Mandal JK
    Biosystems; 2021 Aug; 206():104450. PubMed ID: 34098060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microenvironmental variables must influence intrinsic phenotypic parameters of cancer stem cells to affect tumourigenicity.
    Scott JG; Hjelmeland AB; Chinnaiyan P; Anderson AR; Basanta D
    PLoS Comput Biol; 2014 Jan; 10(1):e1003433. PubMed ID: 24453958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards whole-organ modelling of tumour growth.
    Alarcón T; Byrne HM; Maini PK
    Prog Biophys Mol Biol; 2004; 85(2-3):451-72. PubMed ID: 15142757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxygen-Driven Tumour Growth Model: A Pathology-Relevant Mathematical Approach.
    Delgado-SanMartin JA; Hare JI; de Moura AP; Yates JW
    PLoS Comput Biol; 2015 Oct; 11(10):e1004550. PubMed ID: 26517813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion.
    Cai Y; Xu S; Wu J; Long Q
    J Theor Biol; 2011 Jun; 279(1):90-101. PubMed ID: 21392511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Autowaves in a model of growth of an invasive tumor].
    Kolobov AV; Gubernov VV; Polezhaev AA
    Biofizika; 2009; 54(2):334-42. PubMed ID: 19402546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A cellular automaton model examining the effects of oxygen, hydrogen ions and lactate on early tumour growth.
    Al-Husari M; Murdoch C; Webb SD
    J Math Biol; 2014 Oct; 69(4):839-73. PubMed ID: 23982261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A theoretical analysis of the scale separation in a model to predict solid tumour growth.
    de Melo Quintela B; Hervas-Raluy S; Garcia-Aznar JM; Walker D; Wertheim KY; Viceconti M
    J Theor Biol; 2022 Aug; 547():111173. PubMed ID: 35644484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A cellular automaton model of early tumor growth and invasion.
    Patel AA; Gawlinski ET; Lemieux SK; Gatenby RA
    J Theor Biol; 2001 Dec; 213(3):315-31. PubMed ID: 11735284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-cell-based computer simulation of the oxygen-dependent tumour response to irradiation.
    Harting C; Peschke P; Borkenstein K; Karger CP
    Phys Med Biol; 2007 Aug; 52(16):4775-89. PubMed ID: 17671335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of artificial neural networks for the estimation of tumour characteristics in biological tissues.
    Hosseini SM; Amiri M; Najarian S; Dargahi J
    Int J Med Robot; 2007 Sep; 3(3):235-44. PubMed ID: 17577891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studying the capability of different cancer hallmarks to initiate tumor growth using a cellular automaton simulation. Application in a cancer stem cell context.
    Monteagudo Á; Santos J
    Biosystems; 2014 Jan; 115():46-58. PubMed ID: 24262634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of cell-cell interactions in a two-phase model for avascular tumour growth.
    Breward CJ; Byrne HM; Lewis CE
    J Math Biol; 2002 Aug; 45(2):125-52. PubMed ID: 12181602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiscalar cellular automaton simulates in-vivo tumour-stroma patterns calibrated from in-vitro assay data.
    Delgado-SanMartin JA; Hare JI; Davies EJ; Yates JWT
    BMC Med Inform Decis Mak; 2017 May; 17(1):70. PubMed ID: 28558757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations.
    Lorenzi T; Chisholm RH; Clairambault J
    Biol Direct; 2016 Aug; 11(1):43. PubMed ID: 27550042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A computational framework for modelling solid tumour growth.
    Lloyd BA; Szczerba D; Rudin M; Székely G
    Philos Trans A Math Phys Eng Sci; 2008 Sep; 366(1879):3301-18. PubMed ID: 18593664
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxygen transport in a three-dimensional microvascular network incorporated with early tumour growth and preexisting vessel cooption: numerical simulation study.
    Cai Y; Zhang J; Wu J; Li ZY
    Biomed Res Int; 2015; 2015():476964. PubMed ID: 25695084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental chemotherapy and concepts related to the cell cycle.
    Tannock IF
    Int J Radiat Biol Relat Stud Phys Chem Med; 1986 Feb; 49(2):335-55. PubMed ID: 3510996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling tumour acidity and invasion.
    Webb SD; Sherratt JA; Fish RG
    Novartis Found Symp; 2001; 240():169-81; discussion 181-5. PubMed ID: 11727928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.