BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 17374503)

  • 1. Enzymatic C-H activation by metal-superoxo intermediates.
    Bollinger JM; Krebs C
    Curr Opin Chem Biol; 2007 Apr; 11(2):151-8. PubMed ID: 17374503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-H bond activation by metal-superoxo species: what drives high reactivity?
    Ansari A; Jayapal P; Rajaraman G
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):564-8. PubMed ID: 25418430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regioselectivity of aliphatic versus aromatic hydroxylation by a nonheme iron(II)-superoxo complex.
    Latifi R; Tahsini L; Nam W; de Visser SP
    Phys Chem Chem Phys; 2012 Feb; 14(7):2518-24. PubMed ID: 22252092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative properties of a nonheme Ni(II)(O2) complex: Reactivity patterns for C-H activation, aromatic hydroxylation and heteroatom oxidation.
    Latifi R; Tahsini L; Kumar D; Sastry GN; Nam W; de Visser SP
    Chem Commun (Camb); 2011 Oct; 47(38):10674-6. PubMed ID: 21892444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An "end-on" chromium(III)-superoxo complex: crystallographic and spectroscopic characterization and reactivity in C-H bond activation of hydrocarbons.
    Cho J; Woo J; Nam W
    J Am Chem Soc; 2010 May; 132(17):5958-9. PubMed ID: 20392047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen atom abstraction by a high-valent manganese(V)-oxo corrolazine.
    Lansky DE; Goldberg DP
    Inorg Chem; 2006 Jun; 45(13):5119-25. PubMed ID: 16780334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Status of reactive non-heme metal-oxygen intermediates in chemical and enzymatic reactions.
    Ray K; Pfaff FF; Wang B; Nam W
    J Am Chem Soc; 2014 Oct; 136(40):13942-58. PubMed ID: 25215462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dioxygen activation by a non-heme iron(II) complex: formation of an iron(IV)-oxo complex via C-H activation by a putative iron(III)-superoxo species.
    Lee YM; Hong S; Morimoto Y; Shin W; Fukuzumi S; Nam W
    J Am Chem Soc; 2010 Aug; 132(31):10668-70. PubMed ID: 20681694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic and spectroscopic characterization and reactivities of a mononuclear non-haem iron(III)-superoxo complex.
    Hong S; Sutherlin KD; Park J; Kwon E; Siegler MA; Solomon EI; Nam W
    Nat Commun; 2014 Dec; 5():5440. PubMed ID: 25510711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen atom vs electron transfer in catecholase-mimetic oxidations by superoxometal complexes. Deuterium kinetic isotope effects.
    Simándi TM; May Z; Szigyártó IC; Simándi LI
    Dalton Trans; 2005 Jan; (2):365-8. PubMed ID: 15616728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the nature of carbon-hydrogen bond activation at rhodium and related reactions.
    Jones WD
    Inorg Chem; 2005 Jun; 44(13):4475-84. PubMed ID: 15962954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal complex-assisted activation of small molecules. From NO to superoxide and peroxides.
    Ivanović-Burmazović I; van Eldik R
    Dalton Trans; 2008 Oct; (39):5259-75. PubMed ID: 18827931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Kinetics and mechanisms of the reactions of transition metal complexes].
    Simándi L; Besenyei G
    Acta Pharm Hung; 2000; 70(3-6):244-50. PubMed ID: 11379032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IrII(ethene): metal or carbon radical? Part II: oxygenation via iridium or direct oxygenation at ethene?
    Hetterscheid DG; Bens M; de Bruin B
    Dalton Trans; 2005 Mar; (5):979-84. PubMed ID: 15726153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for C-H cleavage by an iron-superoxide complex in the glycol cleavage reaction catalyzed by myo-inositol oxygenase.
    Xing G; Diao Y; Hoffart LM; Barr EW; Prabhu KS; Arner RJ; Reddy CC; Krebs C; Bollinger JM
    Proc Natl Acad Sci U S A; 2006 Apr; 103(16):6130-5. PubMed ID: 16606846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen-atom transfer from transition metal hydroperoxides, hydrogen peroxide, and alkyl hydroperoxides to superoxo and oxo metal complexes.
    Vasbinder MJ; Bakac A
    Inorg Chem; 2007 Apr; 46(7):2921-8. PubMed ID: 17290988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic design criteria for O-O bond formation via metal-oxo complexes.
    Betley TA; Wu Q; Van Voorhis T; Nocera DG
    Inorg Chem; 2008 Mar; 47(6):1849-61. PubMed ID: 18330975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-free TEMPO-catalyzed oxidative C-C bond formation from Csp3-H bonds using molecular oxygen as the oxidant.
    Zhang B; Cui Y; Jiao N
    Chem Commun (Camb); 2012 May; 48(37):4498-500. PubMed ID: 22453837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. myo-Inositol oxygenase: a radical new pathway for O(2) and C-H activation at a nonheme diiron cluster.
    Bollinger JM; Diao Y; Matthews ML; Xing G; Krebs C
    Dalton Trans; 2009 Feb; (6):905-14. PubMed ID: 19173070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.