BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17374539)

  • 1. Cyclic gas exchange in the giant burrowing cockroach, Macropanesthia rhinoceros: effect of oxygen tension and temperature.
    Woodman JD; Cooper PD; Haritos VS
    J Insect Physiol; 2007 May; 53(5):497-504. PubMed ID: 17374539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discontinuous carbon dioxide release in the German cockroach, Blattella germanica (Dictyoptera: Blattellidae), and its effect on respiratory transpiration.
    Dingha BN; Appel AG; Eubanks MD
    J Insect Physiol; 2005 Jul; 51(7):825-36. PubMed ID: 15936769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of temperature and oxygen availability on water loss and carbon dioxide release in two sympatric saproxylic invertebrates.
    Woodman JD; Cooper PD; Haritos VS
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jun; 147(2):514-20. PubMed ID: 17331767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Burrowing energetics of the Giant Burrowing Cockroach Macropanesthia rhinoceros: an allometric study.
    Xu L; Snelling EP; Seymour RS
    J Insect Physiol; 2014 Nov; 70():81-7. PubMed ID: 25257537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic gas-exchange in the Chilean red cricket: inter-individual variation and thermal dependence.
    Nespolo RF; Artacho P; CastaƱeda LE
    J Exp Biol; 2007 Feb; 210(Pt 4):668-75. PubMed ID: 17267652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hyperoxic switch: assessing respiratory water loss rates in tracheate arthropods with continuous gas exchange.
    Lighton JR; Schilman PE; Holway DA
    J Exp Biol; 2004 Dec; 207(Pt 25):4463-71. PubMed ID: 15557031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas exchange patterns and water loss rates in the Table Mountain cockroach, Aptera fusca (Blattodea: Blaberidae).
    Groenewald B; Bazelet CS; Potter CP; Terblanche JS
    J Exp Biol; 2013 Oct; 216(Pt 20):3844-53. PubMed ID: 23821716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interplay of cutaneous water loss, gas exchange and blood flow in the toad, Bufo woodhousei: adaptations in a terrestrially adapted amphibian.
    Burggren WW; Vitalis TZ
    J Exp Biol; 2005 Jan; 208(Pt 1):105-12. PubMed ID: 15601882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural regulation of discontinuous gas exchange in Periplaneta americana.
    Woodman JD; Cooper PD; Haritos VS
    J Insect Physiol; 2008 Feb; 54(2):472-80. PubMed ID: 18178217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae).
    Terblanche JS; Chown SL
    J Insect Physiol; 2010 May; 56(5):513-21. PubMed ID: 20399350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating onychophoran gas exchange and water balance as a means to inform current controversies in arthropod physiology.
    Clusella-Trullas S; Chown SL
    J Exp Biol; 2008 Oct; 211(Pt 19):3139-46. PubMed ID: 18805813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature- and body mass-related variation in cyclic gas exchange characteristics and metabolic rate of seven weevil species: Broader implications.
    Klok CJ; Chown SL
    J Insect Physiol; 2005 Jul; 51(7):789-801. PubMed ID: 15907926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cockroaches breathe discontinuously to reduce respiratory water loss.
    Schimpf NG; Matthews PG; Wilson RS; White CR
    J Exp Biol; 2009 Sep; 212(17):2773-80. PubMed ID: 19684210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas exchange characteristics, metabolic rate and water loss of the Heelwalker, Karoophasma biedouwensis (Mantophasmatodea: Austrophasmatidae).
    Chown SL; Marais E; Picker MD; Terblanche JS
    J Insect Physiol; 2006 May; 52(5):442-9. PubMed ID: 16466738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of discontinuous gas exchange in insects: the chthonic hypothesis does not hold water.
    Gibbs AG; Johnson RA
    J Exp Biol; 2004 Sep; 207(Pt 20):3477-82. PubMed ID: 15339943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic rate controls respiratory pattern in insects.
    Contreras HL; Bradley TJ
    J Exp Biol; 2009 Feb; 212(Pt 3):424-8. PubMed ID: 19151217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breathe softly, beetle: continuous gas exchange, water loss and the role of the subelytral space in the tenebrionid beetle, Eleodes obscura.
    Schilman PE; Kaiser A; Lighton JR
    J Insect Physiol; 2008 Jan; 54(1):192-203. PubMed ID: 17936295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of acute temperature changes on aerial and aquatic gas exchange, pulmonary ventilation and blood gas status in the South American lungfish, Lepidosiren paradoxa.
    Amin-Naves J; Giusti H; Glass ML
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jun; 138(2):133-9. PubMed ID: 15275647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cockroaches that exchange respiratory gases discontinuously survive food and water restriction.
    Schimpf NG; Matthews PG; White CR
    Evolution; 2012 Feb; 66(2):597-604. PubMed ID: 22276551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bias, precision and accuracy in the estimation of cuticular and respiratory water loss: a case study from a highly variable cockroach, Perisphaeria sp.
    Gray EM; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):169-79. PubMed ID: 17949739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.