BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 17374545)

  • 1. Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions.
    Karamanis D; Assimakopoulos PA
    Water Res; 2007 May; 41(9):1897-906. PubMed ID: 17374545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of p-nitrophenol adsorption from aqueous solution by HDTMA+-pillared montmorillonite--implications for water purification.
    Zhou Q; He HP; Zhu JX; Shen W; Frost RL; Yuan P
    J Hazard Mater; 2008 Jun; 154(1-3):1025-32. PubMed ID: 18082948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Cd2+ from aqueous solution by adsorption using Fe-montmorillonite.
    Wu P; Wu W; Li S; Xing N; Zhu N; Li P; Wu J; Yang C; Dang Z
    J Hazard Mater; 2009 Sep; 169(1-3):824-30. PubMed ID: 19443105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption removal of cadmium and copper from aqueous solution by areca: a food waste.
    Zheng W; Li XM; Wang F; Yang Q; Deng P; Zeng GM
    J Hazard Mater; 2008 Sep; 157(2-3):490-5. PubMed ID: 18313210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu(II) and Co(II).
    Li SZ; Wu PX
    J Hazard Mater; 2010 Jan; 173(1-3):62-70. PubMed ID: 19748730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash.
    Pehlivan E; Cetin S; Yanik BH
    J Hazard Mater; 2006 Jul; 135(1-3):193-9. PubMed ID: 16368188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes.
    Villaescusa I; Fiol N; Martínez M; Miralles N; Poch J; Serarols J
    Water Res; 2004 Feb; 38(4):992-1002. PubMed ID: 14769419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay.
    Vieira MG; Neto AF; Gimenes ML; da Silva MG
    J Hazard Mater; 2010 May; 177(1-3):362-71. PubMed ID: 20042281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.
    Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY
    J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption and desorption behavior of copper ions on Na-montmorillonite: effect of rhamnolipids and pH.
    Ozdemir G; Yapar S
    J Hazard Mater; 2009 Jul; 166(2-3):1307-13. PubMed ID: 19178999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls.
    Rao MM; Ramesh A; Rao GP; Seshaiah K
    J Hazard Mater; 2006 Feb; 129(1-3):123-9. PubMed ID: 16191464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites.
    Yan LG; Xu YY; Yu HQ; Xin XD; Wei Q; Du B
    J Hazard Mater; 2010 Jul; 179(1-3):244-50. PubMed ID: 20334967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption properties of low calorific value Greek lignites: removal of lead, cadmium, zinc and copper ions from aqueous solutions.
    Pentari D; Perdikatsis V; Katsimicha D; Kanaki A
    J Hazard Mater; 2009 Sep; 168(2-3):1017-21. PubMed ID: 19345008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive sorption of protons and metal cations onto kaolinite: experiments and modeling.
    Heidmann I; Christl I; Leu C; Kretzschmar R
    J Colloid Interface Sci; 2005 Feb; 282(2):270-82. PubMed ID: 15589531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption isotherm and kinetic modeling of aniline on Cr-bentonite.
    Zheng H; Liu D; Zheng Y; Liang S; Liu Z
    J Hazard Mater; 2009 Aug; 167(1-3):141-7. PubMed ID: 19171429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of copper and zinc from aqueous solutions by using natural clay.
    Veli S; Alyüz B
    J Hazard Mater; 2007 Oct; 149(1):226-33. PubMed ID: 17560022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of catechol from aqueous solutions by adsorption onto organophilic-bentonite.
    Shakir K; Ghoneimy HF; Elkafrawy AF; Beheir ShG; Refaat M
    J Hazard Mater; 2008 Feb; 150(3):765-73. PubMed ID: 17587494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freundlich and dual Langmuir isotherm models for predicting 137Cs binding on Savannah River Site soils.
    Goto M; Rosson R; Wampler JM; Elliott WC; Serkiz S; Kahn B
    Health Phys; 2008 Jan; 94(1):18-32. PubMed ID: 18091148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite.
    Selvam PP; Preethi S; Basakaralingam P; Thinakaran N; Sivasamy A; Sivanesan S
    J Hazard Mater; 2008 Jun; 155(1-2):39-44. PubMed ID: 18162299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.