These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 17374924)
1. A Monte Carlo (MC) based individual calibration method for in vivo x-ray fluorescence analysis (XRF). Hansson M; Isaksson M Phys Med Biol; 2007 Apr; 52(7):2009-19. PubMed ID: 17374924 [TBL] [Abstract][Full Text] [Related]
2. A method detection limit for potential in vivo arsenic measurements with a 50 W x-ray tube. Studinski RC; McNeill FE; O'Meara JM; Chettle DR Phys Med Biol; 2006 Nov; 51(21):N381-7. PubMed ID: 17047256 [TBL] [Abstract][Full Text] [Related]
3. Monte Carlo simulation of an anthropometric phantom used for calibrating in vivo K-XRF spectroscopy measurements of stable lead in bone. Lodwick CJ; Spitz HB Health Phys; 2008 Dec; 95(6):744-53. PubMed ID: 19001901 [TBL] [Abstract][Full Text] [Related]
4. Determination of intrathyroidal iodine by X-ray fluorescence analysis in 60- to 65-year olds living in an iodine-sufficient area. Milakovic M; Berg G; Eggertsen R; Nyström E; Olsson A; Larsson A; Hansson M J Intern Med; 2006 Jul; 260(1):69-75. PubMed ID: 16789981 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo simulations of in vivo K-shell X-ray fluorescence bone lead measurement and implications for radiation dosimetry. Ahmed N; Fleming DE; O'Meara JM Appl Radiat Isot; 2006 Sep; 64(9):1036-42. PubMed ID: 16766194 [TBL] [Abstract][Full Text] [Related]
6. Monte Carlo simulation of primary electron production inside an a-selenium detector for x-ray mammography: physics. Sakellaris T; Spyrou G; Tzanakos G; Panayiotakis G Phys Med Biol; 2005 Aug; 50(16):3717-38. PubMed ID: 16077223 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo simulation of source-excited in vivo x-ray fluorescence measurements of heavy metals. O'Meara JM; Chettle DR; McNeill FE; Prestwich WV; Svensson CE Phys Med Biol; 1998 Jun; 43(6):1413-28. PubMed ID: 9651014 [TBL] [Abstract][Full Text] [Related]
8. Monte-Carlo simulation of uncertainty in the estimation of 125I in the thyroid. Bhati S; Patni HK Radiat Prot Dosimetry; 2009 Aug; 136(1):23-9. PubMed ID: 19689965 [TBL] [Abstract][Full Text] [Related]
9. Coherent normalization of finger strontium XRF measurements: feasibility and limitations. Zamburlini M; Pejović-Milić A; Chettle DR Phys Med Biol; 2008 Aug; 53(15):N307-13. PubMed ID: 18635898 [TBL] [Abstract][Full Text] [Related]
10. Concepts for dose determination in flat-detector CT. Kyriakou Y; Deak P; Langner O; Kalender WA Phys Med Biol; 2008 Jul; 53(13):3551-66. PubMed ID: 18552416 [TBL] [Abstract][Full Text] [Related]
11. MANTIS: combined x-ray, electron and optical Monte Carlo simulations of indirect radiation imaging systems. Badano A; Sempau J Phys Med Biol; 2006 Mar; 51(6):1545-61. PubMed ID: 16510962 [TBL] [Abstract][Full Text] [Related]
12. Uncertainty calculations for the measurement of in vivo bone lead by x-ray fluorescence. O'Meara JM; Fleming DE Phys Med Biol; 2009 Apr; 54(8):2449-61. PubMed ID: 19336842 [TBL] [Abstract][Full Text] [Related]
13. Application of voxel phantoms and Monte Carlo method to whole-body counter calibration. Kinase S; Takagi S; Noguchi H; Saito K Radiat Prot Dosimetry; 2007; 125(1-4):189-93. PubMed ID: 17522042 [TBL] [Abstract][Full Text] [Related]
14. SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems. Panettieri V; Wennberg B; Gagliardi G; Duch MA; Ginjaume M; Lax I Phys Med Biol; 2007 Jul; 52(14):4265-81. PubMed ID: 17664607 [TBL] [Abstract][Full Text] [Related]
15. Monte Carlo simulation of helical tomotherapy with PENELOPE. Sterpin E; Salvat F; Cravens R; Ruchala K; Olivera GH; Vynckier S Phys Med Biol; 2008 Apr; 53(8):2161-80. PubMed ID: 18385525 [TBL] [Abstract][Full Text] [Related]
16. Subcellular S-factors for low-energy electrons: a comparison of Monte Carlo simulations and continuous-slowing-down calculations. Emfietzoglou D; Kostarelos K; Hadjidoukas P; Bousis C; Fotopoulos A; Pathak A; Nikjoo H Int J Radiat Biol; 2008 Dec; 84(12):1034-44. PubMed ID: 19061127 [TBL] [Abstract][Full Text] [Related]
17. In vivo study of an x-ray fluorescence system to detect bone strontium non-invasively. Zamburlini M; Pejović-Milić A; Chettle DR; Webber CE; Gyorffy J Phys Med Biol; 2007 Apr; 52(8):2107-22. PubMed ID: 17404458 [TBL] [Abstract][Full Text] [Related]
18. [Non-invasive determination of bone lead in human body using X-ray fluorescence excited by 109Cd]. Huang SB; Tian L; Cheng HS; Pei P Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Nov; 24(11):1470-2. PubMed ID: 15762508 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the scattered radiation field around an x-ray tube. Struelens L; Kauwenberghs K; Vanhavere F Phys Med Biol; 2011 May; 56(9):2731-41. PubMed ID: 21464535 [TBL] [Abstract][Full Text] [Related]
20. Monte Carlo simulation of the radiographic imaging procedure for electronically designed phantoms. Lazos D; Kolitsi Z; Pallikarakis N Stud Health Technol Inform; 1999; 68():391-4. PubMed ID: 10724913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]