These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Ex vivo delivery of GDNF maintains motor function and prevents neuronal loss in a transgenic mouse model of Huntington's disease. Ebert AD; Barber AE; Heins BM; Svendsen CN Exp Neurol; 2010 Jul; 224(1):155-62. PubMed ID: 20227407 [TBL] [Abstract][Full Text] [Related]
25. Decreased expression of Hsp27 and Hsp70 in transformed lymphoblastoid cells from patients with spinocerebellar ataxia type 7. Tsai HF; Lin SJ; Li C; Hsieh M Biochem Biophys Res Commun; 2005 Sep; 334(4):1279-86. PubMed ID: 16039988 [TBL] [Abstract][Full Text] [Related]
26. Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington's disease transgenic mice. Zala D; Bensadoun JC; Pereira de Almeida L; Leavitt BR; Gutekunst CA; Aebischer P; Hayden MR; Déglon N Exp Neurol; 2004 Jan; 185(1):26-35. PubMed ID: 14697316 [TBL] [Abstract][Full Text] [Related]
27. High-capacity adenoviral vector-mediated reduction of huntingtin aggregate load in vitro and in vivo. Huang B; Schiefer J; Sass C; Landwehrmeyer GB; Kosinski CM; Kochanek S Hum Gene Ther; 2007 Apr; 18(4):303-11. PubMed ID: 17472569 [TBL] [Abstract][Full Text] [Related]
28. Decreased striatal RGS2 expression is neuroprotective in Huntington's disease (HD) and exemplifies a compensatory aspect of HD-induced gene regulation. Seredenina T; Gokce O; Luthi-Carter R PLoS One; 2011; 6(7):e22231. PubMed ID: 21779398 [TBL] [Abstract][Full Text] [Related]
29. MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. Taylor DM; Moser R; Régulier E; Breuillaud L; Dixon M; Beesen AA; Elliston L; Silva Santos Mde F; Kim J; Jones L; Goldstein DR; Ferrante RJ; Luthi-Carter R J Neurosci; 2013 Feb; 33(6):2313-25. PubMed ID: 23392662 [TBL] [Abstract][Full Text] [Related]
30. HSP27 and cell survival in neurones. Latchman DS Int J Hyperthermia; 2005 Aug; 21(5):393-402. PubMed ID: 16048837 [TBL] [Abstract][Full Text] [Related]
31. Bacterial and yeast chaperones reduce both aggregate formation and cell death in mammalian cell models of Huntington's disease. Carmichael J; Chatellier J; Woolfson A; Milstein C; Fersht AR; Rubinsztein DC Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9701-5. PubMed ID: 10920207 [TBL] [Abstract][Full Text] [Related]
32. Transplantation of human embryonic stem cells alleviates motor dysfunction in AAV2-Htt171-82Q transfected rat model of Huntington's disease. Islam J; So KH; Kc E; Moon HC; Kim A; Hyun SH; Kim S; Park YS Stem Cell Res Ther; 2021 Nov; 12(1):585. PubMed ID: 34809707 [TBL] [Abstract][Full Text] [Related]
33. Polyglutamine-rich suppressors of huntingtin toxicity act upstream of Hsp70 and Sti1 in spatial quality control of amyloid-like proteins. Wolfe KJ; Ren HY; Trepte P; Cyr DM PLoS One; 2014; 9(5):e95914. PubMed ID: 24828240 [TBL] [Abstract][Full Text] [Related]
34. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration. Weydt P; Pineda VV; Torrence AE; Libby RT; Satterfield TF; Lazarowski ER; Gilbert ML; Morton GJ; Bammler TK; Strand AD; Cui L; Beyer RP; Easley CN; Smith AC; Krainc D; Luquet S; Sweet IR; Schwartz MW; La Spada AR Cell Metab; 2006 Nov; 4(5):349-62. PubMed ID: 17055784 [TBL] [Abstract][Full Text] [Related]
35. MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington's disease-related mechanisms. Jovicic A; Zaldivar Jolissaint JF; Moser R; Silva Santos Mde F; Luthi-Carter R PLoS One; 2013; 8(1):e54222. PubMed ID: 23349832 [TBL] [Abstract][Full Text] [Related]
36. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease. Stanek LM; Yang W; Angus S; Sardi PS; Hayden MR; Hung GH; Bennett CF; Cheng SH; Shihabuddin LS J Huntingtons Dis; 2013; 2(2):217-28. PubMed ID: 25063516 [TBL] [Abstract][Full Text] [Related]
37. Progressive phenotype and nuclear accumulation of an amino-terminal cleavage fragment in a transgenic mouse model with inducible expression of full-length mutant huntingtin. Tanaka Y; Igarashi S; Nakamura M; Gafni J; Torcassi C; Schilling G; Crippen D; Wood JD; Sawa A; Jenkins NA; Copeland NG; Borchelt DR; Ross CA; Ellerby LM Neurobiol Dis; 2006 Feb; 21(2):381-91. PubMed ID: 16150600 [TBL] [Abstract][Full Text] [Related]
38. Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington's disease. Wyttenbach A; Carmichael J; Swartz J; Furlong RA; Narain Y; Rankin J; Rubinsztein DC Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2898-903. PubMed ID: 10717003 [TBL] [Abstract][Full Text] [Related]
39. Overexpression of heat shock protein 70 in R6/2 Huntington's disease mice has only modest effects on disease progression. Hansson O; Nylandsted J; Castilho RF; Leist M; Jäättelä M; Brundin P Brain Res; 2003 Apr; 970(1-2):47-57. PubMed ID: 12706247 [TBL] [Abstract][Full Text] [Related]
40. Viral-mediated overexpression of mutant huntingtin to model HD in various species. Ruiz M; Déglon N Neurobiol Dis; 2012 Nov; 48(2):202-11. PubMed ID: 21889981 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]