These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17375147)

  • 1. Bandwidth enhancement by differential mode attenuation in multimode photonic crystal Bragg fibers.
    Skorobogatiy M; Guo N
    Opt Lett; 2007 Apr; 32(8):900-2. PubMed ID: 17375147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of fiber core diameter on dispersion and multiplexing in multimode-fiber links.
    Appaiah K; Vishwanath S; Bank SR
    Opt Express; 2014 Jul; 22(14):17158-71. PubMed ID: 25090530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers.
    Amezcua-Correa R; Broderick NG; Petrovich MN; Poletti F; Richardson DJ
    Opt Express; 2006 Aug; 14(17):7974-85. PubMed ID: 19529167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of Bandwidth of Multimode Step-Index Polymer Photonic Crystal Fibers.
    Drljača B; Savović S; Kovačević MS; Simović A; Kuzmanović L; Djordjevich A; Min R
    Polymers (Basel); 2021 Dec; 13(23):. PubMed ID: 34883721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-domain intermodal interferometer for the bandwidth measurement of a multimode fiber.
    Ahn TJ; Moon S; Kim S; Oh K; Kim DY; Kobelke J; Schuster K; Kirchhof J
    Appl Opt; 2006 Nov; 45(32):8238-43. PubMed ID: 17068566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic bandgap fiber-based Surface Plasmon Resonance sensors.
    Gauvreau B; Hassani A; Fassi Fehri M; Kabashin A; Skorobogatiy MA
    Opt Express; 2007 Sep; 15(18):11413-26. PubMed ID: 19547499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode-multiplexed transmission over conventional graded-index multimode fibers.
    Ryf R; Fontaine NK; Chen H; Guan B; Huang B; Esmaeelpour M; Gnauck AH; Randel S; Yoo SJ; Koonen AM; Shubochkin R; Sun Y; Lingle R
    Opt Express; 2015 Jan; 23(1):235-46. PubMed ID: 25835670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous polymer fibers for low-loss Terahertz guiding.
    Hassani A; Dupuis A; Skorobogatiy M
    Opt Express; 2008 Apr; 16(9):6340-51. PubMed ID: 18545337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of surface modes in low loss hollow-core photonic bandgap fibers.
    Amezcua-Correa R; Gèrôme F; Leon-Saval SG; Broderick NG; Birks TA; Knight JC
    Opt Express; 2008 Jan; 16(2):1142-9. PubMed ID: 18542188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers.
    Skorobogatiy M; Saitoh K; Koshiba M
    Opt Express; 2008 Sep; 16(19):14945-53. PubMed ID: 18795031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic bandgap Bragg fiber sensors for bending/displacement detection.
    Qu H; Brastaviceanu T; Bergeron F; Olesik J; Pavlov I; Ishigure T; Skorobogatiy M
    Appl Opt; 2013 Sep; 52(25):6344-9. PubMed ID: 24085096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber.
    Kibler B; Martynkien T; Szpulak M; Finot C; Fatome J; Wojcik J; Urbanczyk W; Wabnitz S
    Opt Express; 2009 Jun; 17(12):10393-8. PubMed ID: 19506694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic control of higher-order modes in hollow-core photonic crystal fibers.
    Euser TG; Whyte G; Scharrer M; Chen JS; Abdolvand A; Nold J; Kaminski CF; Russell PS
    Opt Express; 2008 Oct; 16(22):17972-81. PubMed ID: 18958077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber.
    Wheeler NV; Heidt AM; Baddela NK; Fokoua EN; Hayes JR; Sandoghchi SR; Poletti F; Petrovich MN; Richardson DJ
    Opt Lett; 2014 Jan; 39(2):295-8. PubMed ID: 24562130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulations of the effect of the core ring on surface and air-core modes in photonic bandgap fibers.
    Kim HK; Digonnet M; Kino G; Shin J; Fan S
    Opt Express; 2004 Jul; 12(15):3436-42. PubMed ID: 19483869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-mode Bragg gratings in tapered few-mode and multimode fibers.
    Herrera-Piad LA; Delgado-Pinar M; Cruz JL; Carrascosa A; Díez A; Rojas-Laguna R; Andrés MV
    Opt Lett; 2019 Aug; 44(16):4024-4027. PubMed ID: 31415537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique loss characteristics in TE
    Kubota H; Kosake N; Miyoshi Y; Ohashi M
    Opt Lett; 2018 Jun; 43(11):2599-2602. PubMed ID: 29856439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber.
    Wang YY; Wheeler NV; Couny F; Roberts PJ; Benabid F
    Opt Lett; 2011 Mar; 36(5):669-71. PubMed ID: 21368943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersion analysis of hollow-core modes in ultralarge-bandwidth all-silica Bragg fibers with nanosupports.
    Cojocaru E
    Appl Opt; 2006 Mar; 45(9):2039-45. PubMed ID: 16579575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers.
    Shemuly D; Stolyarov AM; Ruff ZM; Wei L; Fink Y; Shapira O
    Opt Express; 2012 Mar; 20(6):6029-35. PubMed ID: 22418480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.