BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 17375271)

  • 61. [Distribution characteristic and assessment of soil heavy metal pollution in the iron mining of Baotou in Inner Mongolia].
    Guo W; Zhao RX; Zhang J; Bao YY; Wang H; Yang M; Sun XL; Jin F
    Huan Jing Ke Xue; 2011 Oct; 32(10):3099-105. PubMed ID: 22279930
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production.
    Ruiz Olivares A; Carrillo-González R; González-Chávez Mdel C; Soto Hernández RM
    J Environ Manage; 2013 Jan; 114():316-23. PubMed ID: 23171605
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evaluation of metal partitioning and mobility in a sulfidic mine tailing pile under oxic and anoxic conditions.
    Pinto PX; Al-Abed SR; Holder C; Reisman DJ
    J Environ Manage; 2014 Jul; 140():135-44. PubMed ID: 24747936
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt.
    Rashed MN
    J Hazard Mater; 2010 Jun; 178(1-3):739-46. PubMed ID: 20188467
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Long-term toxicity assessment of soils in a recovered area affected by a mining spill.
    Romero-Freire A; García Fernández I; Simón Torres M; Martínez Garzón FJ; Martín Peinado FJ
    Environ Pollut; 2016 Jan; 208(Pt B):553-61. PubMed ID: 26608875
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Linking biosensor responses to Cd, Cu and Zn partitioning in soils.
    Dawson JJ; Campbell CD; Towers W; Cameron CM; Paton GI
    Environ Pollut; 2006 Aug; 142(3):493-500. PubMed ID: 16325972
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India.
    Kumar Sharma R; Agrawal M; Marshall F
    Ecotoxicol Environ Saf; 2007 Feb; 66(2):258-66. PubMed ID: 16466660
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico.
    Meza-Figueroa D; Maier RM; de la O-Villanueva M; Gómez-Alvarez A; Moreno-Zazueta A; Rivera J; Campillo A; Grandlic CJ; Anaya R; Palafox-Reyes J
    Chemosphere; 2009 Sep; 77(1):140-7. PubMed ID: 19500816
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Human risk assessment for heavy metals and as contamination in the abandoned metal mine areas, Korea.
    Lee SW; Lee BT; Kim JY; Kim KW; Lee JS
    Environ Monit Assess; 2006 Aug; 119(1-3):233-44. PubMed ID: 16741824
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The chemistry and toxicity of discharge waters from copper mine tailing impoundment in the valley of the Apuseni Mountains in Romania.
    Rzymski P; Klimaszyk P; Marszelewski W; Borowiak D; Mleczek M; Nowiński K; Pius B; Niedzielski P; Poniedziałek B
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21445-21458. PubMed ID: 28744684
    [TBL] [Abstract][Full Text] [Related]  

  • 71. MiniSipper: a new in situ water sampler for high-resolution, long-duration acid mine drainage monitoring.
    Chapin TP; Todd AS
    Sci Total Environ; 2012 Nov; 439():343-53. PubMed ID: 23103760
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Macroinvertebrate community response to acid mine drainage in rivers of the High Andes (Bolivia).
    Van Damme PA; Hamel C; Ayala A; Bervoets L
    Environ Pollut; 2008 Dec; 156(3):1061-8. PubMed ID: 18550237
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils.
    Li YT; Becquer T; Dai J; Quantin C; Benedetti MF
    Environ Pollut; 2009 Apr; 157(4):1249-57. PubMed ID: 19152990
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Risk assessment of an abandoned pyrite mine in Spain based on direct toxicity assays.
    García-Gómez C; Sánchez-Pardo B; Esteban E; Peñalosa JM; Fernández MD
    Sci Total Environ; 2014 Feb; 470-471():390-9. PubMed ID: 24144941
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.
    Hamels F; Malevé J; Sonnet P; Kleja DB; Smolders E
    Environ Toxicol Chem; 2014 Nov; 33(11):2479-87. PubMed ID: 25053440
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Contamination from historic metal mines and the need for non-invasive remediation techniques: a case study from Southwest England.
    Rieuwerts JS; Austin S; Harris EA
    Environ Monit Assess; 2009 Jan; 148(1-4):149-58. PubMed ID: 18193487
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Using biofilms for monitoring metal contamination in lotic ecosystems: The protective effects of hardness and pH on metal bioaccumulation.
    Leguay S; Lavoie I; Levy JL; Fortin C
    Environ Toxicol Chem; 2016 Jun; 35(6):1489-501. PubMed ID: 26510090
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluation of tests to assess the quality of mine-contaminated soils.
    Alvarenga P; Palma P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC
    Environ Geochem Health; 2008 Apr; 30(2):95-9. PubMed ID: 18246433
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area.
    Liu WS; Guo MN; Liu C; Yuan M; Chen XT; Huot H; Zhao CM; Tang YT; Morel JL; Qiu RL
    Chemosphere; 2019 Feb; 216():75-83. PubMed ID: 30359919
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Determination of soil contamination sources in mining area using Zn/Cd ratios with mobile Cd.
    Kim DM; Kwon OH; Oh YS; Lee JS
    Environ Geochem Health; 2021 Oct; 43(10):4061-4074. PubMed ID: 33772675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.