These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17375324)

  • 21. Patterns of autosomal divergence between the human and chimpanzee genomes support an allopatric model of speciation.
    Webster MT
    Gene; 2009 Aug; 443(1-2):70-5. PubMed ID: 19463924
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intergenic DNA sequences flanking the pseudo alpha globin genes of human and chimpanzee.
    Sawada I; Beal MP; Shen CK; Chapman B; Wilson AC; Schmid C
    Nucleic Acids Res; 1983 Nov; 11(22):8087-101. PubMed ID: 6316284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative genomic analysis of human and chimpanzee indicates a key role for indels in primate evolution.
    Wetterbom A; Sevov M; Cavelier L; Bergström TF
    J Mol Evol; 2006 Nov; 63(5):682-90. PubMed ID: 17075697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome and gene alterations by insertions and deletions in the evolution of human and chimpanzee chromosome 22.
    Volfovsky N; Oleksyk TK; Cruz KC; Truelove AL; Stephens RM; Smith MW
    BMC Genomics; 2009 Jan; 10():51. PubMed ID: 19171065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens.
    Glinsky GV
    Genome Biol Evol; 2016 Sep; 8(9):2774-88. PubMed ID: 27503290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Origins of De Novo Genes in Human and Chimpanzee.
    Ruiz-Orera J; Hernandez-Rodriguez J; Chiva C; Sabidó E; Kondova I; Bontrop R; Marqués-Bonet T; Albà MM
    PLoS Genet; 2015 Dec; 11(12):e1005721. PubMed ID: 26720152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phylogenomic approaches to common problems encountered in the analysis of low copy repeats: the sulfotransferase 1A gene family example.
    Bradley ME; Benner SA
    BMC Evol Biol; 2005 Mar; 5():22. PubMed ID: 15752422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selection on human genes as revealed by comparisons to chimpanzee cDNA.
    Hellmann I; Zollner S; Enard W; Ebersberger I; Nickel B; Paabo S
    Genome Res; 2003 May; 13(5):831-7. PubMed ID: 12727903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accelerated evolution of conserved noncoding sequences in humans.
    Prabhakar S; Noonan JP; Pääbo S; Rubin EM
    Science; 2006 Nov; 314(5800):786. PubMed ID: 17082449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the recent evolution of the human genome: insights from human-chimpanzee genome comparisons.
    Kehrer-Sawatzki H; Cooper DN
    Hum Mutat; 2007 Feb; 28(2):99-130. PubMed ID: 17024666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative genomics of the keratin-associated protein (KAP) gene clusters in human, chimpanzee, and baboon.
    Shibuya K; Kudoh J; Obayashi I; Shimizu A; Sasaki T; Minoshima S; Shimizu N
    Mamm Genome; 2004 Mar; 15(3):179-92. PubMed ID: 15014967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Humans and chimpanzees differ in their cellular response to DNA damage and non-coding sequence elements of DNA repair-associated genes.
    Weis E; Galetzka D; Herlyn H; Schneider E; Haaf T
    Cytogenet Genome Res; 2008; 122(2):92-102. PubMed ID: 19096204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [A comparative analysis of regulatory regions of the transthyretin gene in the mouse, human, and chimpanzee genomes].
    Nadezhdin EV; Vinogradova TV; Sverdlov ED
    Bioorg Khim; 2004; 30(4):383-8. PubMed ID: 15469012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intergenic and repeat transcription in human, chimpanzee and macaque brains measured by RNA-Seq.
    Xu AG; He L; Li Z; Xu Y; Li M; Fu X; Yan Z; Yuan Y; Menzel C; Li N; Somel M; Hu H; Chen W; Pääbo S; Khaitovich P
    PLoS Comput Biol; 2010 Jul; 6(7):e1000843. PubMed ID: 20617162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genomic analysis reveals a duplication of eight rather than seven short consensus repeats in primate CR1 and CR1L: evidence for an additional set shared between CR1 and CR2.
    McLure CA; Williamson JF; Stewart BJ; Keating PJ; Dawkins RL
    Immunogenetics; 2004 Dec; 56(9):631-8. PubMed ID: 15526096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Catalogue of 59,732 Human-Specific Regulatory Sequences Reveals Unique-to-Human Regulatory Patterns Associated with Virus-Interacting Proteins, Pluripotency, and Brain Development.
    Glinsky GV
    DNA Cell Biol; 2020 Jan; 39(1):126-143. PubMed ID: 31730374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The impact of genomic neighborhood on the evolution of human and chimpanzee transcriptome.
    De S; Teichmann SA; Babu MM
    Genome Res; 2009 May; 19(5):785-94. PubMed ID: 19233772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Triplet repeat length bias and variation in the human transcriptome.
    Molla M; Delcher A; Sunyaev S; Cantor C; Kasif S
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):17095-100. PubMed ID: 19805156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human genomic deletions mediated by recombination between Alu elements.
    Sen SK; Han K; Wang J; Lee J; Wang H; Callinan PA; Dyer M; Cordaux R; Liang P; Batzer MA
    Am J Hum Genet; 2006 Jul; 79(1):41-53. PubMed ID: 16773564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparative analysis of numt evolution in human and chimpanzee.
    Hazkani-Covo E; Graur D
    Mol Biol Evol; 2007 Jan; 24(1):13-8. PubMed ID: 17056643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.