These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 1737573)

  • 1. The endothelium-dependent relaxation of human middle cerebral artery: effects of activated neutrophils.
    Akopov SE; Grigorian MR; Gabrielian ES
    Experientia; 1992 Jan; 48(1):34-6. PubMed ID: 1737573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the clotting process on endothelium-dependent relaxation of human middle cerebral artery.
    Akopov SE; Gabrielian ES
    Blood Coagul Fibrinolysis; 1992 Feb; 3(1):109-11. PubMed ID: 1623111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelium-dependent noradrenaline-induced relaxation of rat isolated cerebral arteries: pharmacological characterization of receptor subtypes involved.
    Hempelmann RG; Ziegler A
    Br J Pharmacol; 1993 Dec; 110(4):1321-8. PubMed ID: 8306071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylcholine-induced relaxation in bovine isolated mesenteric arteries is suppressed by polymorphonuclear leukocytes.
    De Kimpe SJ; Van Heuven-Nolsen D; Nijkamp FP
    Br J Pharmacol; 1993 May; 109(1):8-13. PubMed ID: 8388304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation of sheep cerebral arteries by vasoactive intestinal polypeptide and neurogenic stimulation: inhibition by L-NG-monomethyl arginine in endothelium-denuded vessels.
    Gaw AJ; Aberdeen J; Humphrey PP; Wadsworth RM; Burnstock G
    Br J Pharmacol; 1991 Mar; 102(3):567-72. PubMed ID: 1364820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of H2O2 in superoxide-dismutase-induced enhancement of endothelium-dependent relaxation in rabbit mesenteric resistance artery.
    Itoh T; Kajikuri J; Hattori T; Kusama N; Yamamoto T
    Br J Pharmacol; 2003 May; 139(2):444-56. PubMed ID: 12770950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological comparison of endothelium-dependent relaxation in isolated cerebral and extracerebral arteries.
    Nakagomi T; Hongo K; Kassell NF; Sasaki T; Lehman RM; Ogawa H; Vollmer DG; Torner JC
    J Neurosurg; 1988 Oct; 69(4):580-7. PubMed ID: 3418391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activated neutrophils inhibit cerebrovascular endothelium-dependent relaxations in vitro.
    Csaki C; Szabo C; Benyo Z; Reivich M; Kovach AG
    Life Sci; 1991; 49(15):1087-94. PubMed ID: 1895871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of endothelium in the responses of human intracranial arteries to a slight reduction of extracellular magnesium.
    Szabó C; Hardebo JE; Salford LG
    Exp Physiol; 1992 Jan; 77(1):209-11. PubMed ID: 1543585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscarinic cholinergic receptors on the endothelium of human cerebral arteries.
    Tsukahara T; Kassell NF; Hongo K; Vollmer DG; Ogawa H
    J Cereb Blood Flow Metab; 1989 Dec; 9(6):748-53. PubMed ID: 2584271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Barium inhibits the endothelium-dependent component of flow but not acetylcholine-induced relaxation in isolated rabbit cerebral arteries.
    Wellman GC; Bevan JA
    J Pharmacol Exp Ther; 1995 Jul; 274(1):47-53. PubMed ID: 7616433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time course of changes in endothelium-dependent and -independent relaxation of chronically diabetic aorta: role of reactive oxygen species.
    Karasu C
    Eur J Pharmacol; 2000 Mar; 392(3):163-73. PubMed ID: 10762670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antagonism of acetylcholine-mediated relaxation of rabbit pulmonary arteries by phorbol myristate acetate.
    Cherry PD; Gillis CN
    J Pharmacol Exp Ther; 1988 Nov; 247(2):542-6. PubMed ID: 3141610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms underlying endothelium-independent relaxation by acetylcholine in canine retinal and cerebral arteries.
    Toda N; Zhang JX; Ayajiki K; Okamura T
    J Pharmacol Exp Ther; 1995 Sep; 274(3):1507-12. PubMed ID: 7562527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery.
    Dong H; Waldron GJ; Cole WC; Triggle CR
    Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prostaglandin F2 alpha-induced endothelium-dependent relaxation in isolated monkey cerebral arteries.
    Kawai Y; Ohhashi T
    Am J Physiol; 1991 May; 260(5 Pt 2):H1538-43. PubMed ID: 2035674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impairment of endothelium-dependent relaxation of rat aortas by homocysteine thiolactone and attenuation by captopril.
    Liu YH; You Y; Song T; Wu SJ; Liu LY
    J Cardiovasc Pharmacol; 2007 Aug; 50(2):155-61. PubMed ID: 17703131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective impairment of endothelium-dependent relaxation by sevoflurane: oxygen free radicals participation.
    Yoshida K; Okabe E
    Anesthesiology; 1992 Mar; 76(3):440-7. PubMed ID: 1539857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoflurane produces endothelium-independent relaxation in canine middle cerebral arteries.
    Flynn NM; Buljubasic N; Bosnjak ZJ; Kampine JP
    Anesthesiology; 1992 Mar; 76(3):461-7. PubMed ID: 1539859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human basilar and middle cerebral arteries exhibit endothelium-dependent responses to peptides.
    Onoue H; Kaito N; Tomii M; Tokudome S; Nakajima M; Abe T
    Am J Physiol; 1994 Sep; 267(3 Pt 2):H880-6. PubMed ID: 7522407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.