BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17375828)

  • 1. An ultrasonically levitated noncontact stage using traveling vibrations on precision ceramic guide rails.
    Koyama D; Ide T; Friend JR; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):597-604. PubMed ID: 17375828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-running standing wave-type bidirectional slider for the ultrasonically levitated thin linear stage.
    Koyama D; Takei H; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1823-30. PubMed ID: 18986924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A stator for a self-running, ultrasonically-levitated sliding stage.
    Koyama D; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Nov; 54(11):2337-43. PubMed ID: 18051168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple bidirectional linear microactuator for nanopositioning--the "Baltan" microactuator.
    Friend J; Gouda Y; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jun; 53(6):1160-8. PubMed ID: 16846148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plate-shaped non-contact ultrasonic transporter using flexural vibration.
    Ishii T; Mizuno Y; Koyama D; Nakamura K; Harada K; Uchida Y
    Ultrasonics; 2014 Feb; 54(2):455-60. PubMed ID: 23876434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncontact Transportation of Planar Object in an Ultrasound Waveguide.
    Masuda K; Koyama D; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2160-2166. PubMed ID: 30418873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A standing wave-type noncontact linear ultrasonic motor.
    Hu J; Li G; Chan HL; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):699-708. PubMed ID: 11381693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexural vibration analyses of piezoelectric ceramic tubes with mass loads in ultrasonic actuators.
    Zhang H; Zhang SY; Wang TH
    Ultrasonics; 2007 Dec; 47(1-4):82-9. PubMed ID: 17869319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pi-shaped ultrasonic tweezers concept for manipulation of small particles.
    Hu J; Santoso AK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1499-507. PubMed ID: 15600095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional noncontact transportation of small objects in air using flexural vibration of a plate.
    Kashima R; Koyama D; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2161-8. PubMed ID: 26670855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and dynamic evaluation for a linear ultrasonic stage using the thin-disc structure actuator.
    Wen F; Yen CY
    Ultrasonics; 2007 Dec; 47(1-4):23-31. PubMed ID: 17692880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and experimental study on near-field acoustic levitation by flexural mode.
    Liu P; Li J; Ding H; Cao W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Dec; 56(12):2679-85. PubMed ID: 20040404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noncontact ultrasonic transportation of small objects over long distances in air using a bending vibrator and a reflector.
    Koyama D; Nakamura K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1152-9. PubMed ID: 20442026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.
    Thomas GPL; Andrade MAB; Adamowski JC; Silva ECN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 May; 64(5):839-846. PubMed ID: 28252394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modeling of a microparticle manipulator.
    Neild A; Oberti S; Haake A; Dual J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e455-60. PubMed ID: 16797643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lead-free piezoelectric-metal-cavity (PMC) actuators.
    Lam KH; Lin DM; Kwok KW; Lai-Wa Chan H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1682-5. PubMed ID: 18986912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ultrasonic air pump using an acoustic traveling wave along a small air gap.
    Koyama D; Wada Y; Nakamura K; Nishikawa M; Nakagawa T; Kihara H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):253-61. PubMed ID: 20040451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplitude modulation drive to rectangular-plate linear ultrasonic motors with vibrators dimensions 8 mm x 2.16 mm X 1 mm.
    Ming Y; Hanson B; Levesley MC; Walker PG; Watterson KG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2435-41. PubMed ID: 17186925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.
    Liu Y; Chen W; Liu J; Shi S
    PLoS One; 2010 Apr; 5(4):e10020. PubMed ID: 20368809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radially composite piezoelectric ceramic tubular transducer in radial vibration.
    Shuyu L; Shuaijun W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2492-8. PubMed ID: 22083782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.