These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 17375828)

  • 41. On-chip ultrasonic manipulation of microparticles by using the flexural vibration of a glass substrate.
    Yamamoto R; Koyama D; Matsukawa M
    Ultrasonics; 2017 Aug; 79():81-86. PubMed ID: 28453970
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Note: Experimental study on feasibility of a flexural traveling wave piezoelectric device for biomedical micro-electromechanical system.
    Marinozzi F; Bini F
    Rev Sci Instrum; 2014 Jun; 85(6):066102. PubMed ID: 24985866
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Friction drive of an SAW Motor. Part I: measurements.
    Shigematsu T; Kurosawa MK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):2005-15. PubMed ID: 18986896
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acoustic levitation of an object larger than the acoustic wavelength.
    Andrade MAB; Okina FTA; Bernassau AL; Adamowski JC
    J Acoust Soc Am; 2017 Jun; 141(6):4148. PubMed ID: 28618830
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.
    Liang Z; Zhou G; Zhang Y; Li Z; Lin S
    Ultrasonics; 2006 Dec; 45(1-4):146-51. PubMed ID: 16987537
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultrasonic trapping of small particles by a vibrating rod.
    Liu Y; Hu J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):798-805. PubMed ID: 19406708
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A traveling-wave, modified ring linear piezoelectric microactuator with enclosed piezoelectric elements--the "scream" actuator.
    Friend J; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Aug; 52(8):1343-53. PubMed ID: 16245603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characteristics of ring type traveling wave ultrasonic motor in vacuum.
    Qu J; Zhou N; Tian X; Jin L; Xu Z
    Ultrasonics; 2009 Mar; 49(3):338-43. PubMed ID: 19058827
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SH surface acoustic wave propagation in a cylindrically layered piezomagnetic/piezoelectric structure.
    Du J; Xian K; Wang J
    Ultrasonics; 2009 Jan; 49(1):131-8. PubMed ID: 18922557
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Model-based optimization of ultrasonic transducers.
    Heikkola E; Laitinen M
    Ultrason Sonochem; 2005 Jan; 12(1-2):53-7. PubMed ID: 15474952
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling and experimental analysis of the linear ultrasonic motor with in-plane bending and longitudinal mode.
    Wan Z; Hu H
    Ultrasonics; 2014 Mar; 54(3):921-8. PubMed ID: 24360816
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thin-disk piezoceramic ultrasonic motor. Part I: design and performance evaluation.
    Wen FL; Yen CY; Ouyang M
    Ultrasonics; 2003 Aug; 41(6):437-50. PubMed ID: 12853080
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Piezoelectric ceramic rectangular transducers in flexural vibration.
    Lin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jul; 51(7):865-70. PubMed ID: 15301006
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Behavior characteristics of nano-stage according to hinge structure.
    Oh HS; Lee SJ; Kim YW; Lee DW
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4146-9. PubMed ID: 18047138
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of propagating and standing waves on cavitation appearance.
    Kenis AM; Grinfeld J; Zadicario E; Vitek S
    Ultrasound Med Biol; 2012 Jan; 38(1):99-108. PubMed ID: 22104538
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel, single-mode piezoceramic plate actuator for ultrasonic linear motors.
    Vyshnevskyy O; Kovalev S; Wischnewskiy W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):2047-53. PubMed ID: 16422417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design of a junction for a noncontact ultrasonic transportation system.
    Kashima R; Murakami S; Koyama D; Nakamura K; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):1024-32. PubMed ID: 24859666
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generation and detection of guided waves using PZT wafer transducers.
    Nieuwenhuis JH; Neumann JJ; Greve DW; Oppenheim IJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):2103-11. PubMed ID: 16422424
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Piezoelectrically actuated flextensional micromachined ultrasound transducers--II: fabrication and experiments.
    Perçin G; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):585-95. PubMed ID: 12046934
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling of flexible waveguides for ultrasonic vibrations transmission: longitudinal and flexural vibrations of non-deformed waveguide.
    Stepanenko DA; Minchenya VT
    Ultrasonics; 2010 Mar; 50(3):424-30. PubMed ID: 19857884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.