These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 17375833)

  • 1. A coupled finite-element, boundary-integral method for simulating ultrasonic flowmeters.
    Bezdĕk M; Landes H; Rieder A; Lerch R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):636-46. PubMed ID: 17375833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic flowmeters: half-century progress report, 1955-2005.
    Lynnworth LC; Liu Y
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1371-8. PubMed ID: 16782156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methodology for developing a high-precision ultrasound flow meter and fluid velocity profile reconstruction.
    Mandard E; Kouamé D; Battault R; Remenieras JP; Patat F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):161-72. PubMed ID: 18334322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography.
    Jiang H; Yuan Z; Gu X
    J Opt Soc Am A Opt Image Sci Vis; 2006 Apr; 23(4):878-88. PubMed ID: 16604770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realization of a multipath ultrasonic gas flowmeter based on transit-time technique.
    Chen Q; Li W; Wu J
    Ultrasonics; 2014 Jan; 54(1):285-90. PubMed ID: 23809902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative non-linear ultrasonic imaging of targets with significant acoustic impedance contrast--an experimental study.
    Guillermin R; Lasaygues P; Rabau G; Lefebvre JP
    J Acoust Soc Am; 2013 Aug; 134(2):1001-10. PubMed ID: 23927099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A full-wave Helmholtz model for continuous-wave ultrasound transmission.
    Huttunen T; Malinen M; Kaipio JP; White PJ; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Mar; 52(3):397-409. PubMed ID: 15857048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-element analysis of capacitive micromachined ultrasonic transducers.
    Yaralioglu GG; Ergun AS; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2185-98. PubMed ID: 16463485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers.
    Filoux E; Callé S; Lou-Moeller R; Lethiecq M; Levassort F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1188-99. PubMed ID: 20442031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach.
    Luca A; Marchiano R; Chassaing JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jun; 63(6):886-97. PubMed ID: 27019484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of the spectral 3-D green's function singularities for piezoelectric SAW components.
    Durán M; Nédélec JC; Ossandón S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2395-402. PubMed ID: 16463506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Implementation of an Ultrasonic Flowmeter Based on the Cross-Correlation Method.
    Ren R; Wang H; Sun X; Quan H
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic coupling in capacitive microfabricated ultrasonic transducers: modeling and experiments.
    Caronti A; Savoia A; Caliano G; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2220-34. PubMed ID: 16463488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite-element method model of soft tissue response to impulsive acoustic radiation force.
    Palmeri ML; Sharma AC; Bouchard RR; Nightingale RW; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Oct; 52(10):1699-712. PubMed ID: 16382621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boundary element simulation of backscattering properties for red blood with high frequency ultrasonic transducers.
    Wu SJ; Kuo I; Shung KK
    Ultrasonics; 2005 Jan; 43(3):145-51. PubMed ID: 15556649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersion analysis of leaky guided waves in fluid-loaded waveguides of generic shape.
    Mazzotti M; Marzani A; Bartoli I
    Ultrasonics; 2014 Jan; 54(1):408-18. PubMed ID: 23932015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional finite-element-based photoacoustic tomography: reconstruction algorithm and simulations.
    Yuan Z; Jiang H
    Med Phys; 2007 Feb; 34(2):538-46. PubMed ID: 17388171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and modelling of contacts in explicit finite-element simulation of soft tissue biomechanics.
    Johnsen SF; Taylor ZA; Han L; Hu Y; Clarkson MJ; Hawkes DJ; Ourselin S
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1873-91. PubMed ID: 25559760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel, single-mode piezoceramic plate actuator for ultrasonic linear motors.
    Vyshnevskyy O; Kovalev S; Wischnewskiy W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):2047-53. PubMed ID: 16422417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.