These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
426 related articles for article (PubMed ID: 17376072)
1. The bidirectional polar and unidirectional lateral flagellar motors of Vibrio alginolyticus are controlled by a single CheY species. Kojima M; Kubo R; Yakushi T; Homma M; Kawagishi I Mol Microbiol; 2007 Apr; 64(1):57-67. PubMed ID: 17376072 [TBL] [Abstract][Full Text] [Related]
2. Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus. Kusumoto A; Kamisaka K; Yakushi T; Terashima H; Shinohara A; Homma M J Biochem; 2006 Jan; 139(1):113-21. PubMed ID: 16428326 [TBL] [Abstract][Full Text] [Related]
3. Identification of a luxO-regulated extracellular protein Pep and its roles in motility in Vibrio alginolyticus. Cao X; Wang Q; Liu Q; Rui H; Liu H; Zhang Y Microb Pathog; 2011 Feb; 50(2):123-31. PubMed ID: 21167274 [TBL] [Abstract][Full Text] [Related]
4. Direct observation of steps in rotation of the bacterial flagellar motor. Sowa Y; Rowe AD; Leake MC; Yakushi T; Homma M; Ishijima A; Berry RM Nature; 2005 Oct; 437(7060):916-9. PubMed ID: 16208378 [TBL] [Abstract][Full Text] [Related]
5. ZomB is essential for chemotaxis of Vibrio alginolyticus by the rotational direction control of the polar flagellar motor. Takekawa N; Nishikino T; Hori K; Kojima S; Imada K; Homma M Genes Cells; 2021 Nov; 26(11):927-937. PubMed ID: 34487583 [TBL] [Abstract][Full Text] [Related]
6. Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Atsumi T; McCarter L; Imae Y Nature; 1992 Jan; 355(6356):182-4. PubMed ID: 1309599 [TBL] [Abstract][Full Text] [Related]
7. Dual flagellar systems enable motility under different circumstances. McCarter LL J Mol Microbiol Biotechnol; 2004; 7(1-2):18-29. PubMed ID: 15170400 [TBL] [Abstract][Full Text] [Related]
8. Sodium-driven motor of the polar flagellum in marine bacteria Vibrio. Li N; Kojima S; Homma M Genes Cells; 2011 Oct; 16(10):985-99. PubMed ID: 21895888 [TBL] [Abstract][Full Text] [Related]
9. Conversion of mono-polar to peritrichous flagellation in Vibrio alginolyticus. Kojima M; Nishioka N; Kusumoto A; Yagasaki J; Fukuda T; Homma M Microbiol Immunol; 2011 Feb; 55(2):76-83. PubMed ID: 21204943 [TBL] [Abstract][Full Text] [Related]
10. Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Fukuoka H; Wada T; Kojima S; Ishijima A; Homma M Mol Microbiol; 2009 Feb; 71(4):825-35. PubMed ID: 19183284 [TBL] [Abstract][Full Text] [Related]
11. Asymmetric swimming pattern of Vibrio alginolyticus cells with single polar flagella. Kudo S; Imai N; Nishitoba M; Sugiyama S; Magariyama Y FEMS Microbiol Lett; 2005 Jan; 242(2):221-5. PubMed ID: 15621441 [TBL] [Abstract][Full Text] [Related]
12. Control of speed modulation (chemokinesis) in the unidirectional rotary motor of Sinorhizobium meliloti. Attmannspacher U; Scharf B; Schmitt R Mol Microbiol; 2005 May; 56(3):708-18. PubMed ID: 15819626 [TBL] [Abstract][Full Text] [Related]
13. A slight bending of an α-helix in FliM creates a counterclockwise-locked structure of the flagellar motor in Vibrio. Takekawa N; Nishikino T; Yamashita T; Hori K; Onoue Y; Ihara K; Kojima S; Homma M; Imada K J Biochem; 2021 Dec; 170(4):531-538. PubMed ID: 34143212 [TBL] [Abstract][Full Text] [Related]
14. Only one of the five CheY homologs in Vibrio cholerae directly switches flagellar rotation. Hyakutake A; Homma M; Austin MJ; Boin MA; Häse CC; Kawagishi I J Bacteriol; 2005 Dec; 187(24):8403-10. PubMed ID: 16321945 [TBL] [Abstract][Full Text] [Related]
15. The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. Bren A; Eisenbach M J Mol Biol; 1998 May; 278(3):507-14. PubMed ID: 9600834 [TBL] [Abstract][Full Text] [Related]
16. Localization and domain characterization of the SflA regulator of flagellar formation in Vibrio alginolyticus. Inaba S; Nishigaki T; Takekawa N; Kojima S; Homma M Genes Cells; 2017 Jul; 22(7):619-627. PubMed ID: 28544270 [TBL] [Abstract][Full Text] [Related]
17. Coupling ion specificity of chimeras between H(+)- and Na(+)-driven motor proteins, MotB and PomB, in Vibrio polar flagella. Asai Y; Kawagishi I; Sockett RE; Homma M EMBO J; 2000 Jul; 19(14):3639-48. PubMed ID: 10899118 [TBL] [Abstract][Full Text] [Related]
18. Direct imaging of intracellular signaling components that regulate bacterial chemotaxis. Fukuoka H; Sagawa T; Inoue Y; Takahashi H; Ishijima A Sci Signal; 2014 Apr; 7(319):ra32. PubMed ID: 24692593 [TBL] [Abstract][Full Text] [Related]
19. High hydrostatic pressure induces counterclockwise to clockwise reversals of the Escherichia coli flagellar motor. Nishiyama M; Sowa Y; Kimura Y; Homma M; Ishijima A; Terazima M J Bacteriol; 2013 Apr; 195(8):1809-14. PubMed ID: 23417485 [TBL] [Abstract][Full Text] [Related]
20. A chimeric N-terminal Escherichia coli--C-terminal Rhodobacter sphaeroides FliG rotor protein supports bidirectional E. coli flagellar rotation and chemotaxis. Morehouse KA; Goodfellow IG; Sockett RE J Bacteriol; 2005 Mar; 187(5):1695-701. PubMed ID: 15716440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]