These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
570 related articles for article (PubMed ID: 17376665)
1. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665 [TBL] [Abstract][Full Text] [Related]
2. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Xin B; Zhang D; Zhang X; Xia Y; Wu F; Chen S; Li L Bioresour Technol; 2009 Dec; 100(24):6163-9. PubMed ID: 19656671 [TBL] [Abstract][Full Text] [Related]
3. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. Zeng G; Deng X; Luo S; Luo X; Zou J J Hazard Mater; 2012 Jan; 199-200():164-9. PubMed ID: 22100221 [TBL] [Abstract][Full Text] [Related]
4. Mechanism underlying the bioleaching process of LiCoO Wu W; Liu X; Zhang X; Li X; Qiu Y; Zhu M; Tan W J Biosci Bioeng; 2019 Sep; 128(3):344-354. PubMed ID: 31014562 [TBL] [Abstract][Full Text] [Related]
6. Influence of H2SO4 and ferric iron on Cd bioleaching from spent Ni-Cd batteries. Velgosová O; Kaduková J; Marcinčáková R; Palfy P; Trpčevská J Waste Manag; 2013 Feb; 33(2):456-61. PubMed ID: 23131752 [TBL] [Abstract][Full Text] [Related]
7. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles. Pradhan D; Mishra D; Kim DJ; Ahn JG; Chaudhury GR; Lee SW J Hazard Mater; 2010 Mar; 175(1-3):267-73. PubMed ID: 19879686 [TBL] [Abstract][Full Text] [Related]
8. Dissolution kinetics of spent petroleum catalyst using sulfur oxidizing acidophilic microorganisms. Mishra D; Ahn JG; Kim DJ; Roychaudhury G; Ralph DE J Hazard Mater; 2009 Aug; 167(1-3):1231-6. PubMed ID: 19286311 [TBL] [Abstract][Full Text] [Related]
9. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Wang J; Bai J; Xu J; Liang B J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031 [TBL] [Abstract][Full Text] [Related]
10. Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans. Bayat O; Sever E; Bayat B; Arslan V; Poole C Appl Biochem Biotechnol; 2009 Jan; 152(1):117-26. PubMed ID: 18581266 [TBL] [Abstract][Full Text] [Related]
11. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. Li L; Ge J; Wu F; Chen R; Chen S; Wu B J Hazard Mater; 2010 Apr; 176(1-3):288-93. PubMed ID: 19954882 [TBL] [Abstract][Full Text] [Related]
12. Bioleaching of spent Ni-Cd batteries by continuous flow system: effect of hydraulic retention time and process load. Zhao L; Yang D; Zhu NW J Hazard Mater; 2008 Dec; 160(2-3):648-54. PubMed ID: 18430515 [TBL] [Abstract][Full Text] [Related]
13. Comparison of bio-dissolution of spent Ni-Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate. Zhao L; Zhu NW; Wang XH Chemosphere; 2008 Jan; 70(6):974-81. PubMed ID: 17884135 [TBL] [Abstract][Full Text] [Related]
14. A novel closed-loop biotechnology for recovery of cobalt from a lithium-ion battery active cathode material. Pakostova E; Graves J; Latvyte E; Maddalena G; Horsfall L Microbiology (Reading); 2024 Jul; 170(7):. PubMed ID: 39016549 [TBL] [Abstract][Full Text] [Related]
15. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system. Peng C; Hamuyuni J; Wilson BP; Lundström M Waste Manag; 2018 Jun; 76():582-590. PubMed ID: 29510945 [TBL] [Abstract][Full Text] [Related]
16. Enhanced bioleaching of spent Li-ion batteries using A. ferrooxidans by application of external magnetic field. Kim J; Nwe HH; Yoon CS J Environ Manage; 2024 Sep; 367():122012. PubMed ID: 39094417 [TBL] [Abstract][Full Text] [Related]
17. Metal separation from mixed types of batteries using selective precipitation and liquid-liquid extraction techniques. Provazi K; Campos BA; Espinosa DC; Tenório JA Waste Manag; 2011 Jan; 31(1):59-64. PubMed ID: 20880689 [TBL] [Abstract][Full Text] [Related]
18. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH J Hazard Mater; 2008 Apr; 152(3):1082-91. PubMed ID: 17825485 [TBL] [Abstract][Full Text] [Related]
19. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. Chen P; Yan L; Leng F; Nan W; Yue X; Zheng Y; Feng N; Li H Bioresour Technol; 2011 Feb; 102(3):3260-7. PubMed ID: 21146407 [TBL] [Abstract][Full Text] [Related]
20. A combined recovery process of metals in spent lithium-ion batteries. Li J; Shi P; Wang Z; Chen Y; Chang CC Chemosphere; 2009 Nov; 77(8):1132-6. PubMed ID: 19775724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]