BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 17376831)

  • 1. Impaired T cell receptor signaling in Foxp3+ CD4 T cells.
    Carson BD; Ziegler SF
    Ann N Y Acad Sci; 2007 Apr; 1103():167-78. PubMed ID: 17376831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defects in the Bcl-2-regulated apoptotic pathway lead to preferential increase of CD25 low Foxp3+ anergic CD4+ T cells.
    Zhan Y; Zhang Y; Gray D; Carrington EM; Bouillet P; Ko HJ; O'Reilly L; Wicks IP; Strasser A; Lew AM
    J Immunol; 2011 Aug; 187(4):1566-77. PubMed ID: 21742968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dormant pathogenic CD4
    Cebula A; Kuczma M; Szurek E; Pietrzak M; Savage N; Elhefnawy WR; Rempala G; Kraj P; Ignatowicz L
    Nat Commun; 2019 Oct; 10(1):4882. PubMed ID: 31653839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells.
    Liu H; Komai-Koma M; Xu D; Liew FY
    Proc Natl Acad Sci U S A; 2006 May; 103(18):7048-53. PubMed ID: 16632602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative impact of thymic selection on Foxp3+ and Foxp3- subsets of self-peptide/MHC class II-specific CD4+ T cells.
    Moon JJ; Dash P; Oguin TH; McClaren JL; Chu HH; Thomas PG; Jenkins MK
    Proc Natl Acad Sci U S A; 2011 Aug; 108(35):14602-7. PubMed ID: 21873213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential requirement of PKC-theta in the development and function of natural regulatory T cells.
    Gupta S; Manicassamy S; Vasu C; Kumar A; Shang W; Sun Z
    Mol Immunol; 2008 Dec; 46(2):213-24. PubMed ID: 18842300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells.
    Walker MR; Kasprowicz DJ; Gersuk VH; Benard A; Van Landeghen M; Buckner JH; Ziegler SF
    J Clin Invest; 2003 Nov; 112(9):1437-43. PubMed ID: 14597769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forced Fox-P3 expression can improve the safety and antigen-specific function of engineered regulatory T cells.
    McGovern J; Holler A; Thomas S; Stauss HJ
    J Autoimmun; 2022 Oct; 132():102888. PubMed ID: 36049437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Following the fate of one insulin-reactive CD4 T cell: conversion into Teffs and Tregs in the periphery controls diabetes in NOD mice.
    Fousteri G; Jasinski J; Dave A; Nakayama M; Pagni P; Lambolez F; Juntti T; Sarikonda G; Cheng Y; Croft M; Cheroutre H; Eisenbarth G; von Herrath M
    Diabetes; 2012 May; 61(5):1169-79. PubMed ID: 22403296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The lineage stability and suppressive program of regulatory T cells require protein O-GlcNAcylation.
    Liu B; Salgado OC; Singh S; Hippen KL; Maynard JC; Burlingame AL; Ball LE; Blazar BR; Farrar MA; Hogquist KA; Ruan HB
    Nat Commun; 2019 Jan; 10(1):354. PubMed ID: 30664665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular mechanisms of Foxp3 gene regulation.
    Maruyama T; Konkel JE; Zamarron BF; Chen W
    Semin Immunol; 2011 Dec; 23(6):418-23. PubMed ID: 21752667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CD4+CD25+ regulatory T cells limit the risk of autoimmune disease arising from T cell receptor crossreactivity.
    Stephens LA; Gray D; Anderton SM
    Proc Natl Acad Sci U S A; 2005 Nov; 102(48):17418-23. PubMed ID: 16287973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the T-cell receptor repertoires of tumor-infiltrating conventional and regulatory T cells reveals no evidence for conversion in carcinogen-induced tumors.
    Hindley JP; Ferreira C; Jones E; Lauder SN; Ladell K; Wynn KK; Betts GJ; Singh Y; Price DA; Godkin AJ; Dyson J; Gallimore A
    Cancer Res; 2011 Feb; 71(3):736-46. PubMed ID: 21156649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonself-antigens are the cognate specificities of Foxp3+ regulatory T cells.
    Pacholczyk R; Kern J; Singh N; Iwashima M; Kraj P; Ignatowicz L
    Immunity; 2007 Sep; 27(3):493-504. PubMed ID: 17869133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific immunosuppression with inducible Foxp3-transduced polyclonal T cells.
    Andersen KG; Butcher T; Betz AG
    PLoS Biol; 2008 Nov; 6(11):e276. PubMed ID: 18998771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear pore complex-mediated modulation of TCR signaling is required for naïve CD4
    Borlido J; Sakuma S; Raices M; Carrette F; Tinoco R; Bradley LM; D'Angelo MA
    Nat Immunol; 2018 Jun; 19(6):594-605. PubMed ID: 29736031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The development and function of regulatory T cells.
    Workman CJ; Szymczak-Workman AL; Collison LW; Pillai MR; Vignali DA
    Cell Mol Life Sci; 2009 Aug; 66(16):2603-22. PubMed ID: 19390784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oral immune dysfunction is associated with the expansion of FOXP3
    Bhaskaran N; Schneider E; Faddoul F; Paes da Silva A; Asaad R; Talla A; Greenspan N; Levine AD; McDonald D; Karn J; Lederman MM; Pandiyan P
    Nat Commun; 2021 Aug; 12(1):5143. PubMed ID: 34446704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of full-length FOXP3 exceeds other isoforms in thymus and stimulated CD4 + T cells.
    Kröger B; Spohn M; Mengel M; Sperhake JP; Ondruschka B; Mailer RK
    J Clin Immunol; 2024 Apr; 44(5):114. PubMed ID: 38676826
    [No Abstract]   [Full Text] [Related]  

  • 20. Cellular and molecular signaling towards T cell immunological self-tolerance.
    Carbone F; Russo C; Colamatteo A; La Rocca C; Fusco C; Matarese A; Procaccini C; Matarese G
    J Biol Chem; 2024 Apr; 300(4):107134. PubMed ID: 38432631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.